검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 381

        81.
        2022.05 구독 인증기관·개인회원 무료
        In 2005, groundwater contamination due to unplanned releases of radioactive materials from the US. Nuclear Power Plants (NPPs) such as Braidwood and Indian Point was confirmed. The following year, in 2006, The Nuclear Regulatory Commission (NRC) established a task force team to investigate the history of unplanned release of all NPP in the US. As a results 217 events of unplanned release including leaks and spills were identified in the US NPPs. The NRC regulates the radioactivity concentration of off-site groundwater by setting a reporting levels (RLs), and if exceeds the RLs, the licensee must report within 30 days. When the off-site groundwater is used as drinking water or non-drinking water, the RLs for tritium in groundwater are 740 Bq·L−1 or 1,110 Bq·L−1, respectively. Whereas the NRC does not set the RLs for on-site groundwater. The Nuclear Energy Institute (NEI) issued the guidance document “Industry groundwater protection initiative” NEI 07-07 in 2007. And the members of the NEI promised with regulatory body and local governments to implement groundwater monitoring/protection program according to the NEI 07-07. The document states that when the on-site groundwater is used as drinking water, the RL (740 Bq·L−1) for off-site groundwater will be applied and the licensee voluntarily reported to the NRC. And also, NPPs are setting the Investigation Level (IL) below the RP and the IL is various among the NPPs. The IL is the standard by which detailed investigations are implemented when the level (radioactivity concentration) is exceeded.
        82.
        2022.05 구독 인증기관·개인회원 무료
        Once a radioactive material is released from the nuclear power plant (NPP) by accident, it is necessary to understand the behavior of radioactive plume to protect residents adequately. For this, it is essential to measure the radiation dose rate around NPPs at important locations. Our previous study developed a movable radiation detector that can be installed quickly in an accident to measure gamma dose rate in areas where environmental radiation monitoring system is not installed. The data measured by the detector are transmitted to the server in real-time through LoRA wireless communications. There are two methods to use LoRA communications; one is self-network, and the other is the network provided by the mobile carrier. A signal receiver, called a gateway, should be equipped near the installation location of radiation detectors to use a self-network without using the mobile carrier’s system. In other words, the movable radiation detectors we made can function if there should be any gateway near them. The distance capable of communication between gateway and detector is about 8 km in an open area without significant obstacles. Korea has many significant obstacles, such as mountains around most NPPs. Thus, the gateways could be installed in the proper position before the accident to operate the movable radiation detectors without problems. If the gateway is located at a high position like a mountain top, it could cover a wide area. In this study, the elevation database in the area around the NPPs was collected and analyzed to determine where gateways should be installed. The analysis range is limited in the urgent protective action planning zone. The optimization was also performed to minimize the number of gateways.
        83.
        2022.05 구독 인증기관·개인회원 무료
        In order to monitor the contamination of groundwater due to unplanned release of radioactive materials and the spread to off-site environments, the nuclear power plants (NPPs) conduct groundwater monitoring program (GWMP) in Korea. The GWMP should be established based on the groundwater flow model reflecting the conceptual site model (CSM) of the NPP’s site. In this study, in order to optimize the GWMP, the existing CSM and the groundwater flow model of the domestic NPPs site was updated by reflecting the latest groundwater level. As part of the CSM improvement, the hydrogeological units were subdivided more detailed from three to six through the review of hydrogeological characteristics of the NPPs site. In addition, major variables that affect groundwater flow, such as water conductivity, have been updated. The groundwater flow model was revised overall as the CSM was improved. In particular, the excavation depth of the structure and backfill area generated during the construction stage of the NPP structures was accurately reflected, and the drainage boundary conditions were realistically reflected. To verify the revised groundwater flow model, steady-state correction was performed using the groundwater level measured in April, 2021. As a results of the steady-state correction, the standard error of estimate, root mean square (RMS), normalized RMS, and the correlation coefficient were 0.32 m, 1.692 m, 5.608%, and 0.964, respectively. This means that the groundwater flow model is reasonably constructed. The CSM and groundwater flow model improved in this study will be used to optimize the monitoring location of groundwater in NPPs.
        84.
        2022.05 구독 인증기관·개인회원 무료
        Considering the characteristics of nuclear power plants in order to decommission nuclear power plants safely and economically, this thesis provides a methodology for optimizing the technology for developing decommissioning characteristic evaluation system using simulation technology for core facilities of the plants based on 3D that reflects various factors. The results of pollution assessment and radiation assessment for the Kori Unit 1 reactor building, auxiliary building, and each major device are displayed in 3D drawings and viewer, and the radiation dose rate and radiation assessment results are displayed separately for each major location. Furthermore, this D/B development method which includes inserting result values of characteristic evaluation and the quantity of waste is one of the main technology to optimize the system which enables users to select decommissioning processes and predict the quantity of waste. (Refer to the presented 3D models of the containment building, D/B, tag search module, the scale calculation result of models after visualizing the result value of 3D based decommissioning characteristic evaluation) The methodology for optimizing decommissioning characteristic evaluation result value DB development system using 3D models of the first major nuclear power plant allows the display of decommissioning characteristic values in virtual reality, the selection of decommissioning process, the establishment of the decommissioning procedure. Hence, this study is expected to provide reliable guidelines for managing a decommission business efficiently in the near future and can be used in the related field if needed.
        85.
        2022.05 구독 인증기관·개인회원 무료
        The Kori Unit 1 and Wolsong Units 1, commercial reactors in South Korea, were permanently shut down due to the expiration of their design lifetime. Therefore, nuclear power plants that have been permanently shut down must be dismantled, and the site must be finally released after removing the remaining radionuclides. Domestic regulatory standards for site remediation should not exceed 0.1 mSv per year based on effective dose. In addition, it is necessary to calculate the preliminary Derived Concentration Guideline Levels (DCGL) to prove that the conditions are met. Therefore, in this study, the input factor considering the geological characteristics of the site of Kori Unit 1 was investigated, and the preliminary Derived Concentration Guideline Levels were calculated and compared with the results of previous studies. As a result of comparative analysis, 60Co, 134Cs, and 137Cs, which are gamma-ray emitting radionuclides, had similar values to DCGL of previous studies A and B. However, 63Ni, a beta-rayemitting nuclide, was 5.94×104 Bq·g−1 in this study and 8.47×101 Bq·g−1in previous study B, resulting in a difference of about 700 times. In addition, in the case of 90Sr, this study and previous study A were derived similarly, but this study was 5.34×101 Bq·g−1 and previous study B was 1.18×10−1 Bq·g−1, resulting in a difference of about 450 times. This difference is judged to be because, unlike this study using only the industrial worker scenario, in the case of previous study B, the resident farmer scenario was mixed and used, which considers the internal exposure caused by ingestion of food produced in the contaminated area. In this study, it was confirmed that DCGL according to the change of geological factors of the site did not have a significant effect on gamma-ray-emitting nuclides. However, it was confirmed that considering the intake of food affects the DCGL of beta-ray-emitting nuclides. Therefore, there is a need to conduct future studies applying intake input factors that meet domestic conditions.
        86.
        2022.05 구독 인증기관·개인회원 무료
        Currently, dismantling technology for decommissioning nuclear power plants is being developed around the world. This study describes the cutting technology and one of the technologies being considered for the RV/RVI cutting of Kori Unit 1. The dismantling technology for nuclear power plants include mechanical and thermal methods. Mechanical cutting methods include milling, drill saw, and wire cutting. The advantages of the mechanical method are less generating aerosol and less performance degradation in water. However, the cutting speed is slow and the reaction force is large. Thermal cutting methods use heat sources such as plasma arcs, oxygen, and lasers. The advantages of thermal method are fast cutting speed, low reaction force and thick material cutting. On the other hand, they have problems with fume and melt. Among them, the cutability of the oxygen cutting method is better in carbon steel than in stainless steel. In order to cut the RV/RVI of the Kori Unit 1, the applicability of fine plasma, arc saw, and band/ wheel saw is being reviewed. For RV cutting, the applicability of arc saw and oxy-propane is being considered Because RV is mostly made of carbon steel. However, since the flange is cladded with stainless steel, the use of mechanical methods such as wire saws should be considered. In the case of RVI, since it has a complicated shape and is made of stainless steel, it seems necessary to review various cutting methods. In addition, it will be necessary to minimize radiation exposure of workers by cutting underwater cutting.
        87.
        2022.05 구독 인증기관·개인회원 무료
        The decommissioning of nuclear power plant (NPP) generates large amount of waste. Since the most of the concretes are slightly surface contaminated, the accurate characterization and regionspecific surface decontamination are important for the efficient waste management. After the effective surface decontamination and separation, most of the concrete waste from decommissioning of NPP can be classified as a clearance waste. Various surface characterization and decontamination technologies are suggested. The mechanical technologies are simple and offers direct application. The laser-based technologies offer efficient separation and surface contamination. The high price, however, hesitates the application of the process. The nitro-jet technology, which is based on the evaporation of liquid nitrogen, allows the effective decontamination. However, the high price and uncertainty of large are application hinders the practical application in NPP decommissioning. In this paper, various technologies for characterization, handling, treatment, etc., will be discussed. The advantages and disadvantages of the technologies will be discussed, in terms of practical applications.
        88.
        2022.05 구독 인증기관·개인회원 무료
        During the decommissioning of nuclear power plant (NPP), massive amount of concrete wastes is generated, which are non-radioactive and radioactive. The concrete is a representative construction material which affords reliable structural stability, good formability, and trustful integrity. Also, its reasonable neutron absorbing property allows the various application for many components, including building construction material, bio-shield concrete, etc. Due to the noted aspects of concrete, the radiological concrete characterization is classified as an important process for development of effective strategy for concrete management, in terms of process management and financial control during the decommissioning. The characterization of bio-shield concrete is important in waste management. The understanding and characterization of activation depth is essential for the determination of waste management strategy, classification of bio-shield concrete, and process development of decommissioning. On the other hand, concrete for construction application requires the evaluation of surface contamination of them. The concrete for containment building and its structure is rarely activated, but surface contaminated. In this paper, the reactor data from representative PWR reactors in the US is studied. The experience on Yankee Rowe, Maine Yankee, and Connecticut Yankee NPPs are systematically studied. The Yankee Rowe was a 4-loop PWR of Westinghouse design with 185 MWe. The Main Yankee was a 3- loop PWR of Combustion Engineering design with 864 MWe. The Connecticut Yankee was a 4-loop Westinghouse type with 560 MWe. The characterization studies on bio-shield concrete will be discussed in this paper, including activation depth, primary nuclides, etc.
        89.
        2022.05 구독 인증기관·개인회원 무료
        The Fukushima nuclear power plant accident, which was caused by the Great East Japan Earthquake on March 11, 2011, is of great concern to the Korean people. The scope of interest is wide and diverse, from the nuclear accident itself and the damage situation, to the current situation in Fukushima Prefecture and Japan, and to the safety of Japanese agricultural and fishery products. Concerns about nuclear safety following the Fukushima nuclear accident have a significant impact on neighboring nation’s energy policy. It has been 11 years since the Fukushima nuclear accident. In neighboring nation society, the nature and extent of damage caused by the Fukushima nuclear accident, the feasibility of follow-up measures at home and abroad, the impact on neighboring nations, and the direction of nuclear policy reflecting the lessons of the accident are hotly debated topics. Recently, the controversy has grown further as it is intertwined with Japan’s concerns about the safety and discharge of the contaminated water into the sea, and conflicts over domestic nuclear power policies. About 1.29 million tons, as of March 24, 2022, of the contaminated water are generated, which is close to the 1.37 million tons of water storage capacity. In response, the Japanese government announced on April 13, 2021, that it plans to discharge the contaminated water into the sea from 2023. This study evaluates the amount of the contaminated water that has passed through the ALPS and reviews the preparations and related facilities for ocean discharge after diluting the contaminated water. In addition, it is intended to forecast the various impacts of ocean discharge.
        90.
        2022.05 구독 인증기관·개인회원 무료
        The International Atomic Energy Agency (IAEA) refers to the possibility of changes in the discharge characteristics of radioactive effluents that are different from those during operation when a nuclear power plants (NPPs) are decommissioned. In addition, the IAEA recommends differentiated radioactive effluent management for each phase during decommissioning that reflects changes in discharge characteristics, and changes to authorization and program that are different from those in operation. Bonavigo et., al. estimated the discharge and dose of liquid and gaseous radioactive effluents based on the decommissioning plan of the Trino NPP in Italy during decommissioning, but there is a fundamental limitation in that actual data were not used. Kang and Cheong analyzed the discharge characteristics of radioactive effluents at each activities of decommissioning after permanent shutdown using actual data on radioactive effluents from the United States and Europe, and performed theoretical modeling of discharge characteristics during permanent shutdown. However, there are limitations in that only the emitted radioactivity was considered, the dose assessment was not taken into account, and the improvement methods for the differentiated monitoring program for each phase of decommissioning mentioned in the IAEA were not proposed. Most studies of radioactive effluents discharge from NPPs focus on normal operation, and studies of shutdown or decommissioned NPPs is very limited. Existing studies have not been extended to research on decommissioned NPPs, and there are limitations in that they do not consider the characteristics of decommissioned NPPs mentioned in the IAEA. Therefore, this study aims to improve the effluent monitoring program based on the analysis of the discharge characteristics NPPs that are permanently or long-term shutdown and the change in offsite dose to public. For this purpose, research was conducted on Kori Unit 1 and Wolsong Unit 1 in Korea, which were virtually permanently shutdown, and other long-term shutdown NPPs due to prolonged planned outage maintenance or replacement/repair of equipment in nuclear facility. The discharge characteristics of each radionuclide group, and further, the effect of radioactive effluent released to the environment on the offsite dose are analyzed in details.
        91.
        2022.05 구독 인증기관·개인회원 무료
        The establishment of processes for the decommissioning a Nuclear Power Plant (NPP) is one of the objects that must be prepared in carrying out the decommissioning project. In particular, in the domestic situation, where there is no experience of decommissioning commercial NPPs, it is necessary to organize the tasks and contents well in advance for the successful initiation of the project. Therefore, this study intends to present a guide-level approach to develop management for domestic decommissioning projects. As a documented template for recognizing a process, there may be a process map and description, and information such as the work structure and the relations between the activities should be indicated. In reality, activities will be managed through a set of computer system, so it would be better if the work content, activity flow, relation, management target information, computerization contents, etc. were materialized in the process. What is important here is to define the management areas and activities and draw the activity flow. Domestically, it has rich experience in construction of NPPs and has a track record of exporting NPPs to the UAE. From these experiences, we have established a framework for standardized work in construction management and construction processes, and are performing them through a computerized system. Since the work of decommissioning has a similar nature to that of construction, we will be able to benchmark the procedure for the decommissioning from the construction management procedures. Typically, in the case of schedule management, the concept and structure of the construction process will be applicable to the decommissioning. Meanwhile, the licensee of domestic decommissioning is the same as the licensee that performs the operation, and the members who will perform the decommissioning also have experience working in the operation period. Therefore, the decommissioning works are an extension of the task during operation. Representatively, there are some processes that can be applied as it is even when decommissioning, such as dismantling work and the safety management process of the radiation zone. Therefore, in carrying out the decommissioning of NPPs in Korea, processes and activities of the management area should be established from the construction processes with abundant experience and the processes during operation. Rather than making a completely new work process, this approach that properly reflects the existing work flow is expected to be an appropriate way to avoid the repulsion of employees and maladjustment to the new environment.
        92.
        2022.05 구독 인증기관·개인회원 무료
        The purpose of full system decontamination before decommissioning a nuclear power plant is to reduce radiation exposure of decommissioning workers and to reduce decommissioning waste. In general, full system decontamination removes the CRUD nuclides deposited on the inner surface of the reactor coolant system, chemical and volume control system, residual heat removal system, pressurizer, steam generator tube, etc. by chemical decontamination method. The full system decontamination process applied to Maine Yankee and Connecticut Yankee in the USA, Stade, Obrigheim, Unterweser, Nekawestheim Unit 1 in Germany, Mihama Unit 1 and 2 in Japan, Jose Cabrera Unit 1 in Spain, and Barseback Unit 1 and 2 in Sweden are HP/CORD UV, NP/CORD UV, and DfD. In this study, the quantity of 60Co radioactivity removal, metal removal, ion exchange resin and filter generation according to reactor power, surface area and volume of the full system decontamination flow path, and the decontamination process were compared and analyzed. In addition, the quantity of 60Co radioactivity removal by each nuclear power plant was compared and analyzed with the evaluation results of the 60CO radioactivity inventory of the Kori Unit 1 full system decontamination loops conducted by SAE-AN Enertech Corporation.
        93.
        2022.05 구독 인증기관·개인회원 무료
        As the number of aging nuclear power plants increases, the market for dismantling nuclear power plants is growing rapidly. About 40% of the cost of dismantling nuclear power plants is the waste treatment cost incurred during the dismantling process, of which concrete waste accounts for a significant portion of the total waste. Securing technology for reducing and recycling concrete waste is very important not only in terms of economy but also in terms of environment. The objective is to synthesize geopolymer using inorganic materials from cement fine powder in concrete waste. Cement fine powder in concrete waste has a large amount of inorganic elements necessary for filing materials for radioactive waste treatment such as CaO and SiO2. In particular, Ca(OH)2 is synthesized by extracting Ca2+ from concrete waste. It can be used as an alkali activator to synthesize geopolymer. The mortar from crushed concrete was used as a source of calcium. The first step is to react with concrete waste and hydrochloric acid to extract ions. The second step is to react with NaOH and synthesize Ca(OH)2. The product was divided into two stages according to the reaction method and order. The first and second products were washed and dried, and then XRD and XRF were performed. The second product was matched only Ca(OH)2 and CaCO3 at the XRD peak. In the case of XRF, it was analyzed to have a purity of 67.80–78.73%. Synthesis of geopolymer by recycling materials extracted from concrete waste can reduce disposal costs and improve the utilization rate of disposal sites.
        94.
        2022.05 구독 인증기관·개인회원 무료
        In this study, the current situation of recycling domestic and foreign metal clearance waste was reviewed to suggest the optimal recycling scenario for metal clearance waste that occurs the most when decommission nuclear power plants. Factors that can directly or indirectly affect the recycling of metal clearance waste were analyzed and evaluation criteria that can be used to evaluate optimal recycling measures were prepared. Using this, a scenario for recycling the optimal metal clearance waste suitable for the domestic environment was proposed. As a result of comparing/reviewing the importance of the first level of the evaluation criteria, public acceptance, national policy, and regulatory requirements were evaluated as the most important ones, and recycling acceptance and regulatory requirements were evaluated as the most important the second level of evaluation criteria. As a result of reviewing the clearance waste recycling scenario, it was evaluated that unrestricted recycling scenario was preferred. This may be because the survey subjects are composed of experts in the nuclear power field, so they know recycling of clearance waste in general industries does not significantly affect radiation safety. However even if it is clearance waste, the public may feel reluctant to recycle just because it was discharged from nuclear power plants, so policy and institutional improvements are needed to reassure the public along with the scientific safety of clearance waste. In addition, in order to improve public acceptance, it seems necessary to prepare specific measures to ensure the participation of public in the entire decommissioning process, share related information, and disclose all routes from generation to disposal of decommissioning waste. Considering that research on domestic clearance waste recycling options has not been activated, this study is significant in that it derives a scenario for recycling metal clearance waste that can be implemented. Also, it is expected that the evaluation criteria derived from this study will be used significantly when establishing a radioactive waste management strategy.
        95.
        2022.05 구독 인증기관·개인회원 무료
        The feasibility study of synthesizing graphene quantum dots from spent resin, which is used in nuclear power plants to purify the liquid radioactive waste, was conducted. Owing to radiation safety and regulatory issues, an uncontaminated ion-exchange resin, IRN150 H/OH, prior to its use in a nuclear power plant, was used as the material of experiment on synthesis of graphene quantum dots. Since the major radionuclides in spent resin are treated by thermal decomposition, prior to conducting the experiment, carbonization of ion-exchange resin was performed. The experiment on synthesis of graphene quantum dots was conducted according to the general hydrothermal/solvothermal synthesis method as follows. The carbonized ion-exchange resin was added to a solution, which is a mixture of sulfuric acid and nitric acid in ratio of 3:1, and graphene quantum dots were synthesized at 115°C for 48 hours. After synthesizing, procedure, such as purifying, filtering, evaporating were conducted to remove residual acid from the graphene quantum dots. After freeze-drying which is the last procedure, the graphene quantum dots were obtained. The obtained graphene quantum dots were characterized using atomic force microscopy (AFM), Fourier-transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The AFM image demonstrates the topographic morphology of obtained graphene quantum dots, the heights of which range from 0.4 to 3 nm, corresponding to 1–4 graphene layers, and the step height is approximately 2–2.5 nm. Using FT-IR, the functional groups in obtained graphene quantum dots were detected. The stretching vibrations of hydroxyl group at 3,420 cm−1, carboxylic acid (C=O) at 1,751 cm−1, C-OH at 1,445 cm−1, and C-O at 1,054 cm−1. The identified functional groups of obtained graphene quantum dots matched the functional groups which are present if it is a graphene quantum dot. In Raman spectrum, the D and G peaks, which are the characteristics of graphene quantum dots, were detected at wavenumbers of 1,380 cm−1 and 1,580 cm−1, respectively. Thus, it was verified that the graphene quantum dots could be successfully synthesized from the ionexchange resin.
        96.
        2022.05 구독 인증기관·개인회원 무료
        The design of nuclear fuel storage and handling area includes the activities related to the storage and inspection before fuel loading, transfer into the reactor, removal of irradiated fuel to the spent fuel storage rack, underwater handling and storage, and handling into a shipping cask. The purpose of this study is to provide the design requirements for the spent fuel pool to be prevented from the loss of cooling water and for heavy load control to prevent any load drop resulting in damage to safetyrelated systems during heavy load handling in accordance with the regulatory guidelines. And another purpose is to review the sizing of minimum wet storage capacity in the spent fuel pool based on the maximum refueling batch from the core during refueling plus a full core off-load of fuel assemblies and the minimum discharge burnup spent fuel storage during the design life of plant requested by the utility. As the results of this study, the current general arrangement for the spent fuel storage and handling area and the minimum storage capacity are evaluated. These can be good recommendations to enhance more safe and efficient if implemented to the new nuclear power plants.
        97.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        원자력발전소 기기 내진설계 및 지진해석은 비연계모델을 대상으로 수행된다. 그러나 이러한 비연계해석은 실제 구조물-기기 간 상호작용 등의 실제 현상을 모사할 수 없기 때문에 연계해석에 비하여 정확하지 못한 결과를 발생시키게 된다는 한계를 가진다. 이러 한 배경 아래 이 연구는 실제 원전 격납건물 구조물 및 관련 부계통을 대상으로 질량비와 고유진동수비를 고려하여 지진 연계해석과 비연계해석을 수행하고, 이를 바탕으로 부계통에서의 응답을 비교 분석하였다. 결과적으로 지진 연계해석 결과가 비연계해석 결과보 다 대다수 작은 값을 주는 것을 확인하였다. 이러한 결과는 기존 연구인 단순한 연계모델에 대한 해석 결과와 유사하지만, 부계통 응답 차이는 훨씬 더 두드러지게 나타나는 것을 확인하였다. 또한, 이는 지진파의 입력 주파수의 영향보다는 부계통의 설치위치에 영향을 받는 것으로 확인되었다. 마지막으로 비연계 및 연계 지진해석의 차이가 부계통의 질량비가 크고, 고유진동수가 거의 일치하는 영역 에서 발생하는 이유는 이 영역에서 주계통과 부계통 동적 상호작용이 크게 나타나기 때문인 것으로 보인다.
        4,000원
        99.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study provides technical information about the nuclear fuel handling process, which consists of various subprocesses starting from new fuel receipt to spent fuel shipment at a nuclear power plant and the design requirements of fuel handling equipment. The fuel handling system is an integrated system of equipment, tools, and procedures that allow refueling, handling and storage of fuel assemblies, which comprise the fuel handling process. The understanding and reaffirming of detailed code requirements are requested for application to the design of the fuel handling and storage facility. We reviewed the design requirements of the fuel handling equipment for its adequate cooling, prevention of criticality, its operability and maintainability, and for the prevention of fuel damage and radiological release. Furthermore, we discussed additional technical issues related to upgrading the current code requirements based on the modification of the fuel handling equipment. The suggested information provided in this paper would be beneficial to enhance the safety and the reliability of the fuel handling equipment during the handling of new and spent fuel.
        4,000원
        100.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers’ radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1–107 Bq·g−1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr−1 decontamination speed, better than that of TWI (7,500 cm2·hr−1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.
        4,300원
        1 2 3 4 5