Due to the recent advances in technology, the systems are becoming more demanding in terms of functionality and implementation complexity. Therefore, when system failures are involved in such complex systems, the effects of the related safety issues can also be more serious, thereby causing in the worst case irrecoverable hazards on both human being and properties. This fact can be witnessed in the recent rail systems accidents. In general, the accidents can be attributed to the systematic failure or the random failure. The latter is due to the aging or unsatisfied quality of the parts used in implementation or some unexpected external cause that would otherwise result in accidents whereas the former is usually related to incomplete systems design. As the systems are becoming more complex, so are the systematic failures. The objective of the paper is to study an approach to solving the systematic failure. To do so, at first the system design process is augmented by the functional safety activities that are suggested in the standard IEC 61508. Analyzing the artifacts of the integrated process yields the traceability, which satisfies the requirements for reduction of systematic failure as provided in ISO 26262. In order to reduce systematic failure, the results are utilized in the conceptual design stage of systems development in which systems requirements are generated and functional architecture is developed.