검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand from customers on better products and systems seems to be ever increasing. To meet the demand, the systems are becoming more and more complicated in terms of both scale and functionality, thereby requiring enormous effort in the development. One bright spot of this trend is that such effort has been the driving forces of the remarkable advancement in modern systems development. On the other hand, safety issues appear to be critical in many large-scale systems such as transportation and weapon systems including high-speed trains, airplanes, ships, missiles/rockets launchers, and so on. Such systems turn out to be prone to a variety of faults and thus the resultant failure can cause disastrous accidents. For the reason, they can be referred to as safety-critical systems. The systems failure can be attributed to either random or systemic factors (or sometimes both). The objective of this paper is on how to reduce potential systemic failure in safety critical systems. To do so, a proper system design is pursued to minimize the risk of systemic failure. A focus is placed on the fact that complex systems have a lot of complicated interfaces among the system elements. To effectively handle the sources of hazards at the complicated interfaces and resultant failure, a method is developed by utilizing a design structure matrix. As a case study, the developed method is applied in the design of train control systems.
        4,000원
        2.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the recent advances in technology, the systems are becoming more demanding in terms of functionality and implementation complexity. Therefore, when system failures are involved in such complex systems, the effects of the related safety issues can also be more serious, thereby causing in the worst case irrecoverable hazards on both human being and properties. This fact can be witnessed in the recent rail systems accidents. In general, the accidents can be attributed to the systematic failure or the random failure. The latter is due to the aging or unsatisfied quality of the parts used in implementation or some unexpected external cause that would otherwise result in accidents whereas the former is usually related to incomplete systems design. As the systems are becoming more complex, so are the systematic failures. The objective of the paper is to study an approach to solving the systematic failure. To do so, at first the system design process is augmented by the functional safety activities that are suggested in the standard IEC 61508. Analyzing the artifacts of the integrated process yields the traceability, which satisfies the requirements for reduction of systematic failure as provided in ISO 26262. In order to reduce systematic failure, the results are utilized in the conceptual design stage of systems development in which systems requirements are generated and functional architecture is developed.
        4,000원