논문 상세보기

확률론적 베이지언 모델링에 의한 케이블 교량의 복합열화 리스크 평가 및 예측시스템 KCI 등재

The Risk Assessment and Prediction for the Mixed Deterioration in Cable Bridges Using a Stochastic Bayesian Modeling

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/248170
서비스가 종료되어 열람이 제한될 수 있습니다.
한국구조물진단유지관리공학회 논문집 (Journal of The Korea Institute for Structural Maintenance and Inspection)
한국구조물진단유지관리공학회 (The Korea Institute For Structural Maintenance and Inspection)
초록

상관관계가 높은 복합열화의 완벽한 개별예측모델의 개발은 매우 어려운 문제로, 본 논문에서는 현수교 시스템의 미래열화와 유지 예산을 예측하기 위하여, 10년간의 유지 데이터가 주어진 매개변수(파손지표와 사용성)의 사후 확률 밀도함수를 찾기 위해 베이지언 추론을 적용하였다. 마르코프 연쇄 몬테카를로법을 이용하여 매개변수의 사후 분포를 조사하였다. 감소한 사용성의 모의위험예측은 사전분포와 연간유지 업무에서 업데이트한 데이터의 가능성에 따라 작성한 사후 분포이다. 기존의 선형 예측 모델과 비교하면, 제안된 2차 모델은 교량부품의 사용성, 위험요소, 그리고 유지 예산의 측정 데이터에 대하여 매우 개선된 수렴성과 근접성을 제공한다. 따라서 제안된 2차 추계학적 회귀 모델을 기반으로 복잡한 사회간접설비의 미래 성능과 유지관리예산을 예측하고 제어할 수 있는 기회를 제공할 것으로 기대한다.

The main objective is to predict the future degradation and maintenance budget for a suspension bridge system. Bayesian inference is applied to find the posterior probability density function of the source parameters (damage indices and serviceability), given ten years of maintenance data. The posterior distribution of the parameters is sampled using a Markov chain Monte Carlo method. The simulated risk prediction for decreased serviceability conditions are posterior distributions based on prior distribution and likelihood of data updated from annual maintenance tasks. Compared with conventional linear prediction model, the proposed quadratic model provides highly improved convergence and closeness to measured data in terms of serviceability, risky factors, and maintenance budget for bridge components, which allows forecasting a future performance and financial management of complex infrastructures based on the proposed quadratic stochastic regression model.

저자
  • 조태준(대진대학교 토목공학과 교수) | Cho, Tae Jun
  • 이정배(대진대학교 토목공학과 박사) | Lee, Jeong Bae 교신저자
  • 김성수(대진대학교 토목공학과 교수) | Kim, Seong Soo