We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with fatty acid (8A5H) and phospholipid (DLPE, DMPC, and DPPA). LB films of 8A5H monolayer and 8A5H-phospholipid mixture were deposited using the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured using cyclic voltammetry with three-electrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at various concentrations(0.1, 0.5, and 1.0 mol/L) of NaClO4 solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate was 50, 100, 150 and 200 mV/s, respectively. As a result, LB films of fatty acid and phospholipid (8A5H/DLPE and DPPA) appeared irreversible process were caused by only the reduction current from the cyclic voltammogram and LB film of 8A5H-DMPC mixture was found to be caused by a reversible oxidation-reduction process.