강우자료는 수문 해석에 있어 가장 기본이 되는 입력 자료이며, 다양한 원인에 의해 결측이 발생된다. 본 연구에서는 복잡한 자연현상 문제 해결에 그 응용성이 입증된 신경망 기법을 이용하여 결측 처리된 강우를 추정하기 위해서 소양강댐 유역 12개 강우량 관측소를 대상으로 신경망 모형을 구축하였으며, 모형의 성능 평가를 위해 실무에서 가장 많이 사용되고 있는 우량 보정 방법인 역거리법(RDS)과 산술평균법(AMM)으로 추정한 값과 비교하여 신경망을 이용한 추
Rainfall data is the most basic input data to analyze the hydrological phenomena and can be missing due to various reasons. In this research, a neural network based model to estimate missing rainfall data as approximate values was developed for 12 rainfal