논문 상세보기

Bayesian MBLRP모형을 이용한 극치강수량 모의 기법 개발

A Development of Extreme Rainfall Simulation Technique Based on Bayesian MBLRP model

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/267985
서비스가 종료되어 열람이 제한될 수 있습니다.
한국방재학회 (Korean Society Of Hazard Mitigation)
초록

일반적으로 국지성 집중호우로 인한 산지하천의 돌발홍수 및 도심지의 침수 피해 등을 방지하기 위한 설계에는 포아송 클러스터 강우생성 모형(Poisson Cluster Rainfall Generation Model)과 같은 강수모의발생기법이 이용된다. 그러나 강수량의 1, 2차 모멘트 이상의 통계적 특성을 효과적으로 재현되지 못하고 극치강수량이 관측값에 비해 현저하게 과소 추정되는 등의 문제점이 있으며, 평균적인 강수량과 극치강수량의 통계적 분포특성을 동시에 구현하는 데 어려움이 있다. 이에 본 연구에서는 포아송 클러스터 강우생성 모형 중 공간상의 한 점에 대한 연속시간 강수모형으로 일 단위 이하 강수의 통계적 특성을 재현하는데 유용하다고 알려진 Modified Bartlet-Lewis Rectangular Pulse(MBLRP) 모형에 Bayesian MCMC(Markov Chain Monte Carlo)기법을 연계한 Bayesian MBLRP 모형을 제안하고자 한다. Bayesian MBLRP 모형은 각 매개변수간 결합확률분포를 계산하여 매개변수의 사후분포를 추정하며 이들 사후분포로부터 Monte Carlo 모의를 통해 다양한 시간 규모에서 극치값을 효과적으로 복원할 수 있었다. 사후분포로부터 추정된 강우시나리오는 강우-유출모의 시 유출되는 홍수량 및 홍수위에 대한 불확실성 범위를 정량적으로 제공하는 등 다양한 수문학적 문제에 적용이 가능할 것으로 판단된다.

저자
  • 권현한(전북대학교 토목공학과 부교수) | Kwon, Hyun Han 교신저자
  • 김장경(전북대학교 토목공학과 박사과정) | Kim, Jang Gyeong
  • 김동균(홍익대학교 건설도시공학부 조교수) | Kim, Dong Kyun