검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2016.11 KCI 등재 서비스 종료(열람 제한)
        유역의 신뢰성 있는 수자원계획을 수립하기 위해서는 장기간의 강수자료가 필수적으로 요구된다. 그러나 시간강수시계열의 경우 결측치가 상대 적으로 많으며, 연속적인 시계열을 확보하는데 어려움이 있다. 이러한 점에서 본 연구에서는 대표적인 시간강수모의기법인 Neyman-Scott Rectangular Pulse Model (NSRPM) 기반의 강수모의기법을 활용하여, 모의기반의 장기강수자료를 생산할 수 있는 기법을 개발하고자 한다. 이 와 더불어, 신뢰성 있는 면적강수량을 추정하기 위한 방안으로 유역 내 여러 지점의 강수량을 동시에 모의할 수 있는 다지점 시간강수모의기법을 개발하였다. 개발된 모형은 서울 우이천 유역 강수지점에 적용하여 모형의 적합성을 평가하였다. 모형 적용결과 다양한 지속시간에 대해서 강수량 의 효과적인 모의(평균, 분산, 1차 자기상관계수)가 가능하였으며, 지점간의 공간성도 효과적으로 복원 가능하였다.
        2.
        2015.02 서비스 종료(열람 제한)
        SWMM(Storm Water Management Model)은 모형 내 다양한 매개변수를 이용하여 지표 투수율 및 하수관거 영향 등 도시 유역의 유출 특성을 비교적 정확하게 모의하지만, 모형의 입력자료 부족과 매개변수의 불확실성으로 인한 신뢰성 문제가 대두되고 있다. 이러한 문제점을 해소하기 위해 본 연구에서는 SWMM 모형에 Bayesian 기법을 연계한 최적화 기법을 개발하고, 이를 활용하여 매개변수의 불확실성을 정량적으로 해석하고자 한다. 이를 위해 먼저 유출 특성에 민감한 매개변수를 민감도 분석을 통해 선정하고, SCE-UA(Shuffled Complex Evolution-University of Arizona), MCMC(Markov Chain Monte Carlo), DDS(Dynamically Dimensioned Search) 등 매개변수 최적화 기법을 적용하여 매개변수의 초기값을 설정한다. 매개변수의 다양한 물리적 범위를 고려하기 위한 방법으로 절단 정규분호(truncated Gaussian distribution)을 사전분포(prior)로 선정하여 매개변수의 사후분포(posterior)를 추정하게 된다. 최종적으로 각 매개변수간 사후분포를 이용하여 모의된 유출량의 불확실성을 정량적으로 분석하였다.
        3.
        2014.02 서비스 종료(열람 제한)
        일반적으로 국지성 집중호우로 인한 산지하천의 돌발홍수 및 도심지의 침수 피해 등을 방지하기 위한 설계에는 포아송 클러스터 강우생성 모형(Poisson Cluster Rainfall Generation Model)과 같은 강수모의발생기법이 이용된다. 그러나 강수량의 1, 2차 모멘트 이상의 통계적 특성을 효과적으로 재현되지 못하고 극치강수량이 관측값에 비해 현저하게 과소 추정되는 등의 문제점이 있으며, 평균적인 강수량과 극치강수량의 통계적 분포특성을 동시에 구현하는 데 어려움이 있다. 이에 본 연구에서는 포아송 클러스터 강우생성 모형 중 공간상의 한 점에 대한 연속시간 강수모형으로 일 단위 이하 강수의 통계적 특성을 재현하는데 유용하다고 알려진 Modified Bartlet-Lewis Rectangular Pulse(MBLRP) 모형에 Bayesian MCMC(Markov Chain Monte Carlo)기법을 연계한 Bayesian MBLRP 모형을 제안하고자 한다. Bayesian MBLRP 모형은 각 매개변수간 결합확률분포를 계산하여 매개변수의 사후분포를 추정하며 이들 사후분포로부터 Monte Carlo 모의를 통해 다양한 시간 규모에서 극치값을 효과적으로 복원할 수 있었다. 사후분포로부터 추정된 강우시나리오는 강우-유출모의 시 유출되는 홍수량 및 홍수위에 대한 불확실성 범위를 정량적으로 제공하는 등 다양한 수문학적 문제에 적용이 가능할 것으로 판단된다.
        4.
        2013.01 KCI 등재 서비스 종료(열람 제한)
        신뢰성 있는 홍수빈도해석을 수행하기 위해서는 충분한 홍수량 및 강우자료가 필요하다. 강우자료의 경우 우리나라 대부분 지역에서 30년 이상의 극치자료가 활용이 가능한 반면 홍수량 자료는 상대적으로 충분한 자료가 확보되지 않아 신뢰성 있는 빈도해석이 어려운 실정이다. 이에 따라 강우모의기법에 근거한 홍수빈도곡선 유도방안연구가 몇몇 연구에서 제안된 바 있으나, 기본적으로 입력된 강우의 빈도와 홍수의 빈도가 동일하다고 가정함으로 인하여 발생하는 불확실성이 상당부분 내포되어 있다. 이러한 점에서 본 연구의 목적은 강우모의기법과 불확실성 분석이 고려된 홍수빈도곡선 유도방법을 개발하는 것으로 홍수빈도곡선을 유도하는데 있어서의 핵심은 미래에 발생 가능한 극치강수량을 효과적으로 재현할 수 있는 강수량 모의발생 기법과 강우-유출관계의 불확실성 분석에 있다. 본 연구에서는 극치강수량 모의를 위해 불연속 Kernel Pareto 분포를 이용한 다지점 강수모의기법과 Bayesian HEC-1 (BHEC-1) 모형을 연계하여 본 연구의 대상유역인 대청댐 유역의 강우-유출 관계의 불확실성을 고려한 홍수빈도곡선을 개발하고 모형의 적합성을 평가하였다. 최종적으로 기존 홍수빈도결정방법과 비교를 통해서 모형의 적합성을 확인하였다.
        5.
        2012.05 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 국내외에서 범용되고 있는 단일강우사상 모형인 미육군공병단의 HEC-1 모형을 이용하여 대청댐 유역의 실측 강우-유출 사상을 중심으로 강우-유출 모의를 수행하였으며, 매개변수 검정에는 실제 대청댐의 시간당 유입량을 기준으로 검정을 실시하였다. HEC-1 모형에는 매개변수를 자동으로 최적화시키는 프로그램이 내장되어 있으나 본 연구의 대상유역과 같이 다수의 소유역이 있는 경우, 매개변수 추정시 매개변수 중 일부는 수렴되지 못하고 발산하는 문제가 있었으며, 첨두유량의 추정능력 역시 저하되는 문제를 보였다. 따라서 이러한 HEC-1 모형의 매개변수의 불확실성을 고려하기 위한 방안으로 Bayesian 모형을 HEC-1모형에 연동시켜 활용하였으며, 기존 HEC-1 강우-유출 모형에 적용할 수 있는 매개변수 최적화 및 불확실성 정량화를 위해 HEC-1 강우-유출 모형 매개변수는 SCS 1개, Clark 단위도 2개를 Bayesian MCMC 기법을 적용하여 매개변수간 조건부확률로 모의발생을 한 후, Bayesian 모형으로부터 각 매개변수의 사후분포(posterior distribution)를 추정하여 사후분포의 추정이 매개변수의 불확실성 정량화를 수행하였다. 본 연구를 통해 제안된 BHEC-1 모형을 대상으로 대청댐 유역에 실측 강우-유출 사상에 대해서 모형의 적합성을 평가한 결과, 7개 유역의 21개의 매개변수가 해의 발산 없이 안정된 매개변수 추정이 가능하였다. 한편, Bayesian 모형을 근간으로 하기 때문에 최종결과로서 매개변수들의 사후분포(posterior)의 추정이 가능하여 향후 홍수빈도곡선 유도, 댐 위험도분석과 기후변화 문제와 같은 다양한 수문학적 문제의 연구에 적용 가능할 것으로 전망된다.
        6.
        2011.02 서비스 종료(열람 제한)
        본 연구에서는 국내외에서 대표적으로 이용되는 HEC-1 단일강우사상 모형과 HEC-5 저수지 운영 모형을 연계하여 댐의 수문학적 위험도 분석을 실시하였다. 이를 위해 Bayesian Markov Chain Monte Carlo(MCMC) 기반의 Bayesian HEC-1(BHEC-1) 통합 모델을 개발하였고, 극치강수량 재현에 유리한 다지점 강수모의기법으로 2,000년 빈도에 해당하는 일강수량을 모의하여 연최대강수계열을 추출하였다. 추출된 극치강수량은 BHEC-1모형과 연계하여 불확실성이 반영된 대청댐 유역의 홍수수문곡선 앙상블을 구축하고, HEC-5 모형을 통해 수위로 변환시켜 비상여수로 유무, 댐 연계 여부 등을 고려한 월류 여부를 종합적으로 평가하였다.
        7.
        2011.02 서비스 종료(열람 제한)
        본 연구에서는 국내외에서 대표적으로 이용되는 HEC-1 단일강우사상 모형과 연동할 수 있는 Bayesian Markov Chain Monte Carlo(MCMC) 기반의 Bayesian HEC-1(BHEC-1) 통합 모델을 개발하였다. 본 연구를 통해 제안된 BHEC-1 모형을 대상으로 대청댐 유역에 실측 강우-유출 사상에 대해서 모형의 적합성을 평가하였으며, 7개 유역의 21개의 매개변수를 동시에 추정한 결과 해의 발산 없이 안정된 매개변수 추정이 가능하였다. 또한 Bayesian 모형을 근간으로 하기 때문에 최종결과로서 매개변수들의 사후분포(posterior)의 추정이 가능하여 강우-유출 모형 매개변수의 불확실성을 정량화 할 수 있었으며 이를 통해 모형과 입력 자료가 가지는 불확실성을 효과적으로 파악할 수 있었다.