The photochemical characteristics were analyzed in the context of sowing time and different levels of fertilized nitrogen during the maize (Zea mays L.) growth. When maize was early sawn, the fluorescence parameters related with electrontransport, in photosystem II (PSII) and PSI, were effectively enhanced with the higher level of fertilized nitrogen. Highest values were observed in maize leaves grown in double Nfertilized plot. The photochemical parameters were declined in the progress of growth stage. In early growth stage, the fluorescence parameters were highest, and then reduced to about half of the parameters related with electron transport on PSII and PSI at middle and late growth stages. In 1/2 N plot, the photochemical energy dissipation was measured to 13% in term of active reaction center per absorbed photon resulting in decrease in performance index and driving force of electron. This decrease induced to lower the photochemical effectiveness. In 2 N plots, the electron transport flux from QA to QB per cross section and the number of active PSII RCs per cross section were considerably enhanced. It was clearly indicated that the connectivity between photosynthetic PSII and PSI, i.e. electron transport, was far effective.