Maize (Zea mays. L) is one of the major sources of green fodder for livestock in Pakistan. Crop management plays a key role in obtaining high yields for green fodder. Fertilizer application, seed rate, and row spacing are critical components of crop management, which can significantly affect crop biomass. To determine the best production technology, a two-year (2021-2023) study was conducted at the research area of National Agricultural Research Center, Islamabad. Plant height, number of leaves, leaf area, green fodder yield per acre, and green fodder yield per hectare were recorded. Various row spacing (15 cm, 30 cm, 45 cm, and 60 cm), fertilizer ratio (N: P = 55:30, 65:40, 75:50, and 85:60), and seed rates (30 kg/ac, 35 kg/ac, 40 kg/ac, and 45 kg/ac) were applied. Results obtained experiments revealed that in both growing seasons, the maximum green fodder yield was obtained when fertilizer N: P ratio was 75:50 (green fodder biomass: 74.61 t/ha and 72.56 t/ha). Similarly, the optimal seed rate was found to be 40 kg/ac, which resulted in the highest green fodder yield (73.41 t/ha and 72.88 t/ha in two seasons). Furthermore, the plant of maize at row spacing of 30 cm was found to generate the maximum green fodder yield (72.39 t/ha and 72.40 t/ha, respectively). Green fodder yield per hectare was found to be positively correlated with plant height, number of leaves, and leaf area. These findings underscore the significance of applying a fertilizer ratio of N: P = 75:50, a seed rate 40 kg/ac, and a row spacing of 45 cm for higher yields of green fodder in maize crop.
This study aimed to evaluate the effectiveness of a zeolite and sulfuric acid mixture (ZS) as an air filter to mitigate the emissions of ammonia (NH3), nitrous oxide (N2O), and methane (CH4) during the composting of cattle manure. Compared to the control group (blank), ZS reduced NH3 emissions by 91.4%, N2O emissions by 33.6%, and CH4 emissions by 20.0% over the 100-day composting period. Additionally, sulfuric acid in the ZS reacted with NH3, storing it as ammonium sulfate [(NH4)2SO4], which can serve as a source of nutrients such as nitrogen (N) and sulfur (S). To evaluate the fertilizing efficiency of [(NH4)2SO4] in ZS for maize growth, we applied four treatments: control (non-N fertilizer), collected ZS (cZS), cattle manure (organic fertilizer, OF), and urea (chemical fertilizer, CF). Compared to the control, cZS increased total dry weight (DW) by 48%, total digestible nutrients (TDN) by 7.3%, and crude protein (CP) by 77.8%. No significant differences were found among the applications of cZS, OF, and CF. These results suggest that the zeolite mixed with sulfuric acid effectively reduces hazardous gas emissions such as NH3, CH4, and N2O during cattle manure composting. Furthermore, the collected zeolite can potentially be reused as fertilizer, suggesting a positive opportunity for resource recycling to mitigate environmental pollution.
The economy of Tanzania relies on agriculture as the main economic activity, because agriculture provides both food and income to the population of the country, especially the rural households. Improvement of market access to crops also increases the productivity. Therefore, in this study, descriptive statistics and statistical analysis of the probit model were used to analyze the factors that determine the market accessibility of small-scale farmers in Chemba, Tanzania. Cross-sectional data collected by the systematic sampling method for 200 corn peasants in Chemba, Tanzania were used. As a result of probit regression analysis, it was found that access to improved seeds and technology had a positive statistically significant effect on the accessibility to the market, while the age of the head of the household, production cost, distance to the market, and household size had a negative statistically significant effect. Therefore, in this study, policy establishment and implementation are recommended. A policy needs to be considered to reduce the transaction costs that eventually allows the farmers to increase the accessibility to markets, enables small-scale farmers to participate in cooperatives, lowers input costs and provides educational programs on quality products to increase their competitiveness in the marketplace.
To identify some significant phenotypic characteristics of maize(zea mays) seeds, we have obtained Red, Green, Blue(RGB) digital image data from 82 recombinant inbred lines. Based on the collected image data, their morphological and color data were analyzed, and seven significant parameters were selected, including area, perimeter, length, width, circularity, roundness, and surface texture. The extracted RGB data were converted into color hex codes to visualize the representative colors of the seeds. These visualized colors were categorized into six groups: gray, yellowish white, yellow, grayish orange, purple, and brown. The results of maize seed phenotypic analysis using the RGB digital images in this study will serve as a useful tool for constructing a database of seed phenotyping database and establishing a standardized classification system.
Since maize (Zea mays L.) originated in central and south America, it requires warm climate conditions throughout its growing season. Growth halts when night-time temperatures drop below 10℃, and the plant may die if temperature reach -1.7℃. Thus, temperature should be maintained between 10 and 30℃ from seeding to maturity. The germination temperature for maize should be at least 8-11℃, whit an optimal range 32-34℃. Since temperature significantly affects the germination rate and period, it plays a crucial role in maize growth. In this study, we evaluated the quantity and feed value of 11 major varieties to determine those best suited for maize cultivation as feed in higher latitude, specifically in Democratic People’s of Republic of Korea, below 38 degrees north. A cultivation test was also conducted in Suwon in Republic of Korea, to assess adaptability in areas south of Mt. Suyang. Among the varieties tested, Shinhwangok2 reached silking the fastest, in 65 days, while Gwangpyeongok took the longest at 75 days. The stem length of all varieties exceeded 230 cm. Gwangpyeongok had the tallest stems, while Daanok and Shinhwangok2ho displayed the highest ear ratios. Dacheongok presented the highest values in both dry matter and TDN quantity, with 31,420 kg/ha and 21,66 kg/ha respectively. Pyeonggangok had the highest crude protein content at 8.0%. TDN (%) ranged from 57-68%, with Hwangdaok reaching up to 68%. Based on these findings, Dacheongok and Pyeonggangok appear to be the most suitable varieties for cultivation in terms of both quantity and feed value.
아메리카동애등에 유충은 유기성폐기물을 먹이원으로 하며 그 분해산물인 동애등에분은 비료원료로 활용 가능하다. 그러나 농가에서 나오는 분변토는 염분함량이 높아 단독으로 사용하면 토양에 염류집적의 우려가 있다. 이에 산업곤충인 동애등에 분변토의 염분을 낮춰 퇴비로 활용하고자 옥수수(미백2호)에 5처리(무처리, 동애등에분, 동애등에분:흰점박이꽃무지분(2:8), 동애등에분:퇴비(2:8), 퇴비)로 비료를시용하였다. 옥수수 생 육은 초장, 간장, 웅수장, 착수고를 조사하였고 종실은 이삭중, 이삭장, 착립이삭장, 이삭폭 등을 조사하였다. 처리구별 옥수수 수량(kg/10a)은 무처리구 702.8kg, 동애등에분처리구 835.6kg. 동애등에분:흰점박이꽃무지분 (2:8) 처리구 723.7kg, 동애등에분:퇴비(2:8) 처리구 862.3kg, 퇴비 처리구 803.7kg으로 조사되었다. 동애등에 분변 토를 시판퇴비와 혼합하여 퇴비로 활용하면 옥수수 생산을 증진시키는데 효과적이나 장기적인 실험을 통해 토양과 작물에 미치는 영향을 모니터링해야 될 것으로 판단된다.
The Republic of Korea reclaimed land to increase its food self-sufficiency rate, but the yield was reduced due to abnormal climate. In this study, it was hypothesized that rapid and continuous monitoring technology could help improve yield. Using the vegetation index (VI) analysis, the drought stress index was calculated and the drought stress for corn grown in Hwaong, Saemangeum, and Yeongsan River reclaimed tidal land was predicted according to drying treatment. The vegetation index of corn did not decrease during the last 20 days of irrigation when soil moisture rapidly decreased, but decreased rapidly during the 20 days after irrigation. The reduction rate of the vegetation index according to the drying treatment was in the order of Saemangeum>Yeongsan River>Hwaong reclaimed tidal land, and normalized difference vegetation index (NDVI) decreased by approximately 50% in all reclaimed tidal lands, confirming that drought stress occurred due to the decrease in moisture content of the leaves. In addition, structure pigment chlorophyll index (SIPI) and photochemical reflectance index (PRI), which are calculated based on changes in light use efficiency and carotenoids, were reduced; drought stress caused a decrease in light use efficiency and an increase in carotenoid content. Therefore, vegetation index analysis was confirmed to be effective in evaluating and predicting drought stress in corn growing on reclaimed tidal land corn.
식용 옥수수 수확기는 수확 시 옥수수 이삭의 손상율을 결정하는 탈과 시스템이 중요하다. 탈과 시스템을 개발하기 위해서는 탈과 시스템의 손상율에 영향을 미치는 주요 설계 변수를 구명해야 하고, 설계 변수의 영향 분석에는 시뮬레이션 기법이 많이 사용되고 있다. 본 연구의 목적은 탈과 시스템의 시뮬레이션 해석에 사용할 옥수수 줄기에 대한 이산요소 모델을 개발하는 것이다. 식용 옥수수의 특성을 고려하기 위하여 옥수수 줄기의 물리적 특성을 분석하였으며, 만능재료시험기를 이용한 압축 시험과 3점 굽힘 시험을 통하여 역학적 특성을 확인하였다. 또한, 옥수수 줄기의 이산요소 모델은 접촉 모델과 결합 모델로 구현하였고, 매개변수 연구를 통해 이산요소 모델의 주요 파라미터를 도출하였으며, 시험 결과와 비교하여 개발된 이산요소 모델을 검증하였다. 본 연구로부터 개발된 옥수수 줄기 모델은 탈과 시스템의 시뮬레이션에 활용된다.
This study aimed to investigate the impacts of extreme weather on the dry matter yield (DMY) of silage maize in South Korea. The maize data (n=3,041) were collected from various reports of the new variety of adaptability experiments by the Rural Development Administration (1978-2017). Eight weather variables were collected: mean temperature, low temperature, high temperature, maximum precipitation, accumulated precipitation, maximum wind speed, mean wind speed, and sunshine duration. These variables were calculated based on ten days within seeding to harvesting period. The box plot detected an outlier to distinguish extreme weather from normal weather. The difference in DMY between extreme and normal weather was determined using a t-test with a 5% significance level. As a result, outliers of high-extreme precipitation were observed in July and August. Low-extreme mean temperature was remarkable in middle May, middle June, and late July. Moreover, the difference in DMY between extreme and normal weather was greatest (5,597.76 kg/ha) during the maximum precipitation in early July. This indicates that the impact of heavy rainfall during the Korean monsoon season was fatal to the DMY of silage maize. However, in this study, the frequency of extreme weather was too low and should not be generalize. Thus, in the future, we plan to compare DMY with statistical simulations based on extreme distributions.
The purpose of this study was to investigate the Maillard reaction–related physicochemical properties of three maize varieties (Kwangpyeongok, Sinhwangok2ho and Gangdaok) after roasting them for different times (0, 15, 25, 40, and 55 minutes). The Maillard reaction is a non-enzymatic browning reaction involving reducing sugars and amino compounds. The content of reducing sugar, the causative agent of the Maillard reaction, decreased as roasting time increased. Gangdaok showed the lowest reducing sugar content of 1.04 mg/g after 55 minutes of roasting. In the elapsed roasting time, chromaticity ‘L’ and ‘b’ values decreased. At 55 minutes of roasting, wherein the Maillard reaction occurred most actively, Gangdaok showed the lowest ‘L’ value of 56.37 and the highest ‘a’ value of 7.60. Gangdaok had superior conditions for inducing the Maillard reaction compared to other varieties, and it is consider that 'flint–type', an endosperm characteristic, may have been the influencing agent. This study detected a total of 52 types of volatile aroma compounds (VACs), of which 28 were produced after roasting. Of the total VACs detected, 2-Formyl-5-methylfuran and 2-Furancarboxaldehyde accounted for 43.8~45.5% and have been confirmed to be the major VACs present in roasted maize. Most of the correlations between the Maillard reaction–related characteristics showed high correlation coefficients.
Maize is an important cereal crop widely grown in all of Nigeria’s agroecology based on its economic and food values. This has led to its optimum production with Nigeria ranking top 12th maize producer in the world. Presently, the fall armyworm (FAW), Spodoptera frugiperda is considered a potential threat to food security in Nigeria due to its devastating feeding pattern on maize and its wide host range. Its invasive and high dispersal nature enhances its spread from its first reported state (Oyo) in early 2016 to the entire 36 states of Nigeria by the year 2018. It accounts for averagely an estimated 34% or more yield reduction in Nigeria’s maize field, hence, a need for an efficient management approach. Although most farmers rely on the use of insecticide, it is found ineffective because of the inaccessible location of FAW in maize. This study was carried out to investigate the different management approaches adopted in Nigeria to control FAW and its impact on the insect pest population. Conventional measures such as planting improved seeds, avoidance of late planting, and polyculture to increase the natural enemy’s population have been used but with limited control of FAW. Maize lines with aflatoxin resistance or transgenic Bt-maize are found resistant to FAW. Botanicals such as neem extract lowered the percentage of leaf area damage, incidence of FAW larva infestation, and the number of larvae. It is difficult to curtail the menace of FAW through one control method, hence, the need for an integrated approach
The purpose of this study was to evaluate the forage maize varieties and sowing date under wet seasons conditions and determined the effects on yield in Cambodia. In this study, the number of days from sowing to silking was approximately nine longer in May and June than in July, August, and September. The number of days from silking to harvest was seven shorter in May and June than in July, August, and September. The variety with the least decrease in ear height was ‘BT5666’, and the variety with the least decrease in ear height ration was ‘CP888’. On the other hand, in sowing days, ear height ratio decreased in September. The best sowing season in ear length, ear width, number of ears and number of grains per row was in May. In this study, ‘BT5666’ was the variety with significant decrease with a 90% reduction in yield. The results indicate that the yield was high during the sowing period in May and in June because of the appropriate precipitation, temperature, and solar radiation. However, August and September had significantly reduce in yield by high precipitation and low solar radiation.
This study was conducted to estimate the damage of Whole Crop Maize (WCM) according to abnormal climate using machine learning and present the damage through mapping. The collected WCM data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. Deep Crossing is used for the machine learning model. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The damage was calculated by difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCM data (1978~2017). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization(WMO) standard. The DMYnormal was ranged from 13,845~19,347 kg/ha. The damage of WCM was differed according to region and level of abnormal climate and ranged from -305 to 310, -54 to 89, and -610 to 813 kg/ha bnormal temperature, precipitation, and wind speed, respectively. The maximum damage was 310 kg/ha when the abnormal temperature was +2 level (+1.42 ℃), 89 kg/ha when the abnormal precipitation was -2 level (-0.12 mm) and 813 kg/ha when the abnormal wind speed was -2 level (-1.60 ㎧). The damage calculated through the WMO method was presented as an mapping using QGIS. When calculating the damage of WCM due to abnormal climate, there was some blank area because there was no data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).
The objective of this study was to verify the effect of pig slurry application with acidification and biochar on feed value, nitrogen use efficiency (NUE) of maize forage, and ammonia (NH3) emission. The four treatments were applied: 1) non-pig slurry (only water as a control, C), 2) only pig slurry application (P), 3) acidified pig slurry application (AP), 4) acidified pig slurry application with biochar (APB). The pig slurry and biochar were applied at a rate of 150 kg N ha-1 and 300 kg ha-1, respectively. The AP and APB treatments enhanced all feed values compared to C and P treatments. The NUE for plant N was significantly increased 92.1% by AP and APB treatment, respectively, compared to the P treatment. On the other hand, feed values were not significantly different between AP and APB treatments. The acidification treatment with/without biochar significantly mitigated NH3 emission compared to the P treatment. The cumulative NH3 emission throughout the period of measurement decreased by 71.4% and 74.8% in the AP and APB treatments. Also, APB treatment reduced ammonia emission by 11.9% compared to AP treatment. The present study clearly showed that acidification and biochar can reduce ammonia emission from pig slurry application, and pig slurry application with acidification and biochar exhibited potential effects in feed value, NUE, and reducing N losses from pig slurry application through reduction of NH3 emission.
농업기계는 다양한 환경과 작물을 대상으로 작업을 수행하기 때문에 농업기계의 설계와 개발은 실 작업 부하를 고려하여 수행되어야 한다. 따라서 본 연구에서는 식용 옥수수 수확기의 실 작업 부하를 계측하기 위해 식용 옥수수 수확 시험을 수행하였다. 또한, 계측된 부하 데이터를 이용하여 수확기 내 기어박스 요소들의 강도 및 수명을 평가하기 위한 부하 스펙트럼을 구축하였다. 부하 스펙트럼은 기어박스의 구성요소 중 기어와 베어링에 적용 가능한 하중 지속 분포와 기어와 베어링을 제외한 축, 하우징, 캐리어 등에 적용 가능한 부하 스펙트럼으로 나누어 구축하였다. 본 연구를 통해 구축된 하중 지속 분포 및 부하 스펙트럼은 식용 옥수수 수확기의 기어박스 강도 및 수명 평가뿐만 아니라, 기어박스의 설계 하중으로도 활용이 가능할 것으로 보인다.