This paper presents a laboratory validation for a Finite Element model updating method using moving vehicle input-deflection output measurements. In conventional FE model updating, a few natural frequencies measured from field experiments have been used to update the FE model based on the assumption that the mass matrix is known accurately. The proposed approach can update the stiffness matrix without the assumption by using static input-output measurements and can even update the mass matrix by using a few natural frequencies obtained from dynamic measurements. Laboratory experiments were carried out for a scaled model of Samseung Bridge located in the test road of Korea Highway Corporation. For a simplicity of experiments, a mass (11kgf) was located in four different locations on the deck and two deflections were measured by laser displacement meters: one at the center girder, and the other in at the outer girder, both in mid-span. Results showed that the proposed methods was capable to estimate Young's Modulus and the mass density of the model bridge accurately while natural-frequency-based updating may result in significant error when higher modes (2nd, 3rd) were used.