Soil salinity at newly reclaimed land in west coast of Korea is highly variable and depending on soil characteristics and weather conditions. The objective of this study was to evaluate the spatiotemporal distribution characteristics changes on soil electrical conductivity and exchangeable sodium percentage in Saemangeum newly reclaimed land. Experimental sites was selected at Gyehwa (35o75'N, 126o60'E) in Saemangeum reclaimed land and their dominant soil series was Munpo (coarseloamy, mixed, non-acid, mesic, typic Fluvaquents). Soil samples were periodically collected at 0 ~ 20 cm and 20 ~ 40 cm layer from each site. Soil electrical conductivity had a wide range from 0.15 to 41.76 dS/m, which was variable according to the weather conditions. The average soil electrical conductivity from March 2014 to 2015 was 6.4 and 3.4 dS/m at Gyehwa in Seamangeum reclaimed land. Calcium concentration in soil solution was negatively correlated with soil electrical conductivity and soluble sodium. Soluble sodium concentration had great variations and it was the most influencing single factor for temporal variations of soil electrical conductivity regardless of soil textural properties. The characteristics of Saemangeum reclaimed land had different shares of saline and sodic properties during the experimental period. Our results indicate that persistent monitoring and modeling on soil salinity at coastal tide land is fundamental and the results can provide some useful information for deciding management plans for diverse utilization or to reduce salt damage for stable crop production at reclaimed tidal land.