Composite columns are increasingly used due to the construction of super-tall buildings and large-scale buildings. Studies on the shapes of and construction technologies for structural members using steel tubes are being conducted actively. Welded built-up CFT columns previously developed and commercialized by the authors of this study (ACT-1 columns) are structurally stable and economically efficient. However, the 1m limit in the width of the columns and their small interior spaces impose a difficulty in installing reinforcing materials and thus deteriorate the ease and efficiency with which they are constructed. This study suggests placing thick plates at the centers of the surfaces of the existing ACT-1 column and installing a binding frame (binding frames) at the central thick plates to enhance the integrity and resist lateral pressure caused by concrete casting. Finite element analysis was conducted with the variables of the number and cross-sectional size of the binding frame and the cross-sectional size of the steel tube to estimate the structural behavior of the steel tubes. Hydraulic tests were conducted to analyze load-displacement relations and identify the influence of the binding frames on the relations. The variables in the tests were the number and cross-sectional size of the binding frame, welding details, column joint and the cross-sectional size of the steel tube