Resveratrol was incorporated into various combinations of single- and double-layer nanoemulsions, prepared by selfassembly emulsification and complex coacervation with chitosan, alginate, and β-cyclodextrin, respectively. Resveratrol nanoemulsions were composed of medium-chain trigacylglycerols (MCTs), Tween ® 80, water, chitosan, alginate, and β-cyclodextrin. The corresponding mixtures were formulated for the purpose of being used as a nutraceutical delivery system. Resveratrol nanoemulsions were obtained with particle sizes of 10-800 nm, with the size variation dependent on the emulsification parameters including the ratio of aqueous phase and surfactant ratio. Resveratrol nanoemulsions were characterized by evaluating particle size, zeta-potential value, stability, and release rate. There were no significant changes in particle size and zeta-potential value of resveratrol nanoemulsions during storage for 28 days at 25°C. The stability of resveratrol in the double-layer nanoemulsions complexed with chitosan or β-cyclodextrin was higher, compared with the single-layer nanoemulsions.