Pulp and paper industry produces large volumes of wastewater and residual sludge waste, resulting in many issues in relation to wastewater treatment and sludge disposal. Contaminants in pulp and paper wastewater include effluent solids, sediments, chemical oxygen demand (COD), and biological oxygen demand (BOD), which should be treated by wastewater treatment processes such as coagulation and biological treatment. However, few works have been attempted to predict the treatment efficiency of pulp and paper wastewater. Accordingly, this study presented empirical models based on experimental data in laboratory-scale coagulation tests and compared them with statistical models such as artificial neural network (ANN). Results showed that the water quality parameters such as turbidity, suspended solids, COD, and UVA can be predicted using either linear or expoential regression models. Nevertheless, the accuracies for turbidity and UVA predictions were relatively lower than those for SS and COD. On the other hand, ANN showed higher accuracies than the emprical models for all water parameters. However, it seems that two kinds of models should be used together to provide more accurate information on the treatment efficiency of pulp and paper wastewater.