Ochratoxin A, which is frequently detected in cereals and infant diets worldwidely, is a mycotoxin to damage mainly the kidney and liver. Because ochratoxin A is highly thermostable compound. it is necessary to study ways of reducing level of ochratoxin A by controling processing steps. However, food processes, including extrusion, expansion, roasting, and steam cooking, which are used in order to mitigate the contents of ochratoxin A, are known to produce polycyclic aromatic hydrocarbons, which are generated from radicals decomposed by pyrolysis. Therefore, this study analyzed the levels of 4 polycyclic aromatic hydrocarbons, benz (a) anthracene, chrysene, benzo (b) fluoranthene and benzo (a) pyrene in rice-based products made in high pressure and heating process. Rice samples were finely ground, and homogenized samples were alkaline treatement with 1 M KOH/EtOH and extracted with liquid-liquid extraction method using n-hexane. The extracted solution was pretreated with a silica cartridge. The purified solution was dried with nitrogen gas and dissolved in 1 mL of dichloromethane and injected into GC/MSD. We had overall recoveries for 4 polycyclic aromatic hydrocarbons spiked into rice samples ranging from 92.8 to 110.2%. The limit of quantitations of benz (a) anthracene, chrysene, benzo (b) fluoranthene and benzo (a) pyrene in rice-based product were 0.19 ng/g, 0.38 ng/g, 0.51 ng/g, and 0.31 ng/g, respectively. However, these 4 polycyclic aromatic hydrocarbons in all processed rice samples were not detected.