The bacterial community structure in biological activated carbon (BAC) process in drinking water treatment plant was investigated by Fluorescent in situ Hybridization (FISH) with rRNA-targeted oligonucleotide probe. Samples were collected at different three points in BAC process every month for one year. They were hybridized with a probe specific for the alpha, beta, gamma subclass of the class Proteobacteria, Cytophaga- Flavobacteria group and Gram-positive high G+C content (HGC) group. Total numbers of bacteria in BAC process counted by 4',6-diamidino-2-phenylindole (DAPI) staining were 5.4×1010 (top), 4.0×1010 (middle) and 2.8×1010 cells/ml (bottom). The number of the culturable bacteria was from 1.0×107 to 3.6×107 cells/ml and the culturability was about 0.05%. The faction of bacteria detectable by FISH with the probe EUB338 was about 83% of DAPI counts. Gamma and alpha subclass of the class Proteobacteria were predominant in BAC process and their ratios were over 20% respectively. In top and middle, alpha, beta and gamma subclass of the class Proteobacteria competed with each other and their percentages was changed according to the season. In bottom, gamma subclass of the class Proteobacteria was predominant all through the year. It could be successfully observed the seasonal distribution of bacterial community in biological activated carbon process using FISH.