검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2008.05 KCI 등재 서비스 종료(열람 제한)
        The bacterial community structure in biological activated carbon (BAC) process in drinking water treatment plant was investigated by Fluorescent in situ Hybridization (FISH) with rRNA-targeted oligonucleotide probe. Samples were collected at different three points in BAC process every month for one year. They were hybridized with a probe specific for the alpha, beta, gamma subclass of the class Proteobacteria, Cytophaga- Flavobacteria group and Gram-positive high G+C content (HGC) group. Total numbers of bacteria in BAC process counted by 4',6-diamidino-2-phenylindole (DAPI) staining were 5.4×1010 (top), 4.0×1010 (middle) and 2.8×1010 cells/ml (bottom). The number of the culturable bacteria was from 1.0×107 to 3.6×107 cells/ml and the culturability was about 0.05%. The faction of bacteria detectable by FISH with the probe EUB338 was about 83% of DAPI counts. Gamma and alpha subclass of the class Proteobacteria were predominant in BAC process and their ratios were over 20% respectively. In top and middle, alpha, beta and gamma subclass of the class Proteobacteria competed with each other and their percentages was changed according to the season. In bottom, gamma subclass of the class Proteobacteria was predominant all through the year. It could be successfully observed the seasonal distribution of bacterial community in biological activated carbon process using FISH.
        2.
        2007.10 KCI 등재 서비스 종료(열람 제한)
        Feathers are produced in huge quantities as a waste product at commercial poultry processing plants. Since feathers are almost pure keratin protein, feather wastes represent an alternative to more expensive dietary ingredients for animal feedstuffs. Generally they become feather meal used as animal feed after undergoing physical and chemical treatments. These processes require significant energy and also cause environmental pollutions. Therefore, biodegradation of feather by microorganisms represents an alternative method to prevent environment contamination. The aim of this study was to investigate cultural conditions affecting keratinolytic protease production by Bacillus pumilus RS7. We also assessed the nutritive value of microbial and alkaline feather hydrolysates. The composition of optimal medium for the keratinolytic protease was fructose 0.05%, yeast extract 0.3%, NaCl 0.05%, K2HPO4 0.03%, KH2PO4 0.04% and MgCl2ㆍ6H2O 0.01%, respectively. The optimal temperature and initial pH was 30℃ and 9.0, respectively. The keratinolytic protease production under optimal condition reached a maximum after 18 h of cultivation. Total amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was 113.8 ㎍/ml and 504.9 ㎍/ml, respectively. Essential amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was 47.2 ㎍/ml and 334.0 ㎍/ml, respectively. Thus, feather hydrolysates have the potential for utilization as an ingredient in animal feed.
        3.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        The aim of this study was to isolate mesophilic chicken feather-degrading bacteria and to evaluate feather hydrolysate as alternative biofertilizer. Isolate RS7 was isolated from compost and identified as Bacillus pumilus according to API analysis and 16S rDNA sequencing analysis. Chicken feathers were completely degraded after 5 days of cultivation at 30℃. Feather hydrolysate treated by B. pumilius RS7 positively influenced Helianthus sannuus L. (sunflower) growth (e.g. growth rate, number and dry weight of leave, and flowering rate). These results suggest that feather hydrolysate prepared using B. pumilius RS7 could successfully be used as alternative biofertilizer, thereby reducing the environmental impact of feather waste from the poultry industry.