A laboratory experiment was conducted to investigate nitrogen removal from plating wastewater by a soil reactor. A combination of soil, waste oyster shell and activated sludge were used as a loading media in a soil reactor. The addition of 20% waste oyster shell and activated sludge to the soil accelerated nitrification (88.6% NH4+-N removal efficiency) and denitrification (84.3% NO3--N removal) in the soil reactor, respectively. In continuous removal, the influent NH4+-N was mostly converted to nitrate nitrogen in the nitrification soil reactor and only a small amount of NH4+-N was found in the effluent. When methanol was added as a carbon source to the denitrification soil reactor, the average removal efficiency of NO3--N significantly increased. The NO3--N removal by methanol addition in the denitrification soil reactor was mainly due to denitrification. The phosphorus was removed by the waste oyster shell media in the nitrification soil reactor. Moreover, the phosphorus removal in the denitrification soil reactor was achieved by synthesis of bacteria and the denitrification under anaerobic conditions. The approximate number of nitrifiers and denitrifiers was 3.3×105 MPN/g soil at a depth of 1~10 cm and 3.3×106 MPN/g soil at a depth of 10~20 cm, respectively, in the soil reactor mixed with a waste oyster shell media and activated sludge.