The objective of this study was to review and evaluate the growing subject of food tourism research, and thus identify the trend of food tourism research. Using a Text mining technique, this paper discovered the trends of the literature on food tourism that was published from 2004 to 2018. The study reviewed 201 articles that include the words ‘food’ and ‘tourism’ in their abstracts in the KCI database. The Wordscloud analysis results presented that the research subjects were predominantly ‘Festival’, ‘Region’, ‘Culture’, ‘Tourist’, but there was a slight difference in frequency according to the time period. Based on the main path analysis, we extracted the meaningful paths between the cited references published domestically, resulting in a total of 12 networks from 2004 to 2018. The Text network analysis indicated that the words with high centrality showed similarities and differences in the food tourism literature according to the time period, displaying them in a sociogram, a visualization tool. This study has implications that it offers a new perspective of comprehending the overall flow of relevant research.