In the present work, the sintering behavior of high strength Al-5.6Zn-2.5Mg-1.6Cu (in wt.%) alloy compacts prepared from elemental powders was investigated. Microstructural evaluation was accompanied by XRD and DSC methods in order to determine the temperature and chemical composition of the liquid phases formed during sintering. It was found that three transient liquid phases are formed at 420, 439 and 450 . Microstructural study revealed the progressive formation of sintered contacts due to the presence of the liquid phases, although the green compact expands as a result of the melt penetration along the grain boundaries. While Zn melts at , the intermetallic phases formed between Al and Mg were found to be responsible for the formation of liquid phase and the dimensional change at higher temperatures.