All-surface, all-tooth machining and roll forming of cast iron have been used to manufacture the crankshaft position sensor wheel (CPSW). However, these methods pose many problems such as difficult processing, high material cost, and low tooth precision. Thus, we developed a sintered CPSW with an improved detection ability in order to resolve the problems related with the previous methods of manufacturing CPSW by simplifying the process flow and improving tooth precision. The sintering process is introduced in this study. We conducted an experiment to compare the sintered and roll formed products and analyzed the results to evaluate the reliability of the sintering process. Furthermore, we compared and analyzed stress and displacement in the sintered and roll formed products through the "Finite Element Method(FEM)". According to the experimental and FEM results, the sintered product showed satisfactory mechanical properties. It was less expensive to process and lighter and showed better quality than the roll formed product. The results of this study could be applied to design an optimum CPSW using the sintering process.