Using Eeclaimed Land for Potato Cultivation in Saemangeum, South Korea: Determining the Optimal Nitrogen Fertilization Rate with the Giant Miscanthus used as a Source of Soil Organic Matter
To restore reclaimed land, it needs to be supplemented with organic matter; this is especially true for Korea, where organic matter constitutes only one-tenth of conventional agricultural soils. The giant Miscanthus, a perennial grass known for its extensive biomass, shows signs of being an excellent source of organic matter for restoring reclaimed land. Therefore, the objectives of this study were to (i) evaluate the feasibility of using the giant miscanthus as an organic resource within the context of re-using reclaimed land for agricultural purposes (i.e., potato cultivation), and (ii) determine the optimum fertilization rate for the potatoes while the giant miscanthus is being used as an organic resource. Our results show that after 180 days, giant miscanthus lost 23–47% of its original dry weight, with the extent of the loss dependent on soil salinity. Nutrient concentrations (Mg2+, Na+) continued to increase until the end of the study period. In contrast, potassium (K+) and the ratio of carbon to nitrogen (C/N) decreased until the end of the study period. Specifically, after 180 days, low salinity topsoil treatments had the lowest C/N ratio. In the first year, 150 % of standard N rates were required for the potatoes to achieve maximum productivity; however in the 2nd year, standard rates were sufficient to achieve maximum productivity. Overall, this implies that even though the application of giant miscanthus did eventually improve soil quality, increasing crop yields, N fertilization is still necessary for the best outcomes.