In this paper, the CFRP(Carbon Fiber Reinforced Plastic) parts were printed and cut in a large-scale additive and subtractive hybrid manufacturing system. A method to increase the strength and durability of a product by identifying the interlayer adhesion during the printing process of a large-scale additive manufacturing hybrid system was investigated. According to the printing conditions(CF content, deposition temperature, compaction process), the specimen was printed and cut to determine the tensile strength in the printing direction. As a result of the experiment, the highest tensile strength was shown when ABS-CF 20wt.% Compound was printed at 230℃ extrusion temperature, and the higher the CF content of the material, the lower the tensile strength. As a result of observing the inside of the test piece through an optical microscope, a large number of voids were kept inside the test piece. To remove voids generated inside the test piece, a compaction process was applied to the additive manufacturing hybrid system to prepare a test piece. As a result, void size decreased, and the strength of the part showed a tendency to increase. It is thought that additive manufacturing with high tensile strength can be obtained through studies on the optimization of deposition conditions in additive manufacturing hybrid systems.