논문 상세보기

A Case Study on the Decontamination Reuse and Recycle of Contaminated Metal and Concrete for Decommissioning NPP

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/430572
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Decontamination and Dismantlement (D&D) are of great interest to owner of decommissioning as a large number of old nuclear facilities around the world are either shutdown or soon to be decommissioned. D&D are key steps in the decommissioning of nuclear power plants (NPPs). These activities typically generate a significant volume of radioactively contaminated waste. However, as much as 90% or more of this waste is lightly contaminated metal and concrete that could potentially be cleared for recycle or beneficial reuse, rather than disposed of as radioactive waste. The objective of this study is to provide reference for the application of current technologies to cost-effectively reduce the volume of radioactive waste associated with decommissioning, through review of experiences with decontamination of NPPs materials for unrestricted release, recycle or reuse, Also, highlights the importance of ongoing efforts to harmonize regulations and standards for radioactive waste management globally to enable reuse and recycle of valuable materials generated during decommissioning. The presented results in the balance of this study are organized to align with the sequence of operations for executing reuse or recycle of material for a decommissioning project. Concrete from buildings has most commonly been used for backfill of voids onsite, while metal has most commonly been melted or cleared into the conventional scrap recycling industry. Copper and lead, commonly found in cables and shielding, have high residual value and are thus highly desirable for recycling. Steel and stainless steel, while not inherently valuable, are present in many large components, such that decontamination for recycling can be cost-effective compared to disposal as radioactive waste. The decontamination techniques range from simple, inexpensive methods to complex, aggressive methods, each with advantages in various scenarios and limitations in others. Treatment often involves the sequential application of two or more decontamination techniques (e.g., chemical decontamination followed by abrasive blasting). Strategies for the characterization of materials for recycling include analyzing material in place before dismantlement, analyzing removed samples before or after dismantlement, and evaluating bulk material removed after dismantlement. If clearance and recycling are permitted, metals can be released to the conventional scrap recycling market, and concrete rubble can be used as backfill material onsite. In general, successful reuse/recycle projects require consideration of reuse/recycling objectives and implementation of associated planning activities early in the decommissioning process. The practicality of reuse/recycle depends on a number of high level (country and region-specific) and component level (material and case specific) factors. Since this information is useful to those responsible for planning or implementing the decommissioning of nuclear facilities, it is expected that it will be of great help especially to those in charge of decommissioning plan and managers in charge of decommissioning projects.

저자
  • Jihwan Yu(Central Research Institute, Korea Hydro & Nuclear Power Company Limited, 70, Yuseong-daero 1312beon-gil, Yuseong-gu, Daejeon) Corresponding author
  • Hyung-woo Seo(Central Research Institute, Korea Hydro & Nuclear Power Company Limited, 70, Yuseong-daero 1312beon-gil, Yuseong-gu, Daejeon)
  • Gi-lim Kim(Central Research Institute, Korea Hydro & Nuclear Power Company Limited, 70, Yuseong-daero 1312beon-gil, Yuseong-gu, Daejeon)
  • Junki Baik(Central Research Institute, Korea Hydro & Nuclear Power Company Limited, 70, Yuseong-daero 1312beon-gil, Yuseong-gu, Daejeon)