논문 상세보기

Assessment of Structural Improvements in Disposal Containers Through Metal Composite Coating

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431356
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

Radioactive waste is typically disposed of using standard 200 and 320 L drums based on acceptance criteria. However, there have been no cases evaluating the disposal and suitability of 200 L steel drums for RI waste disposal. There has been a lack of prior assessments regarding the disposal and suitability of 200 L steel drums for the disposal of RI waste. Radioactive waste is transported to disposal facilities after disposal in containers, where the drums are loaded and temporarily stored. Subsequently, after repackaging the disposal drums, the repackaged drums are transported to disposal facilities by vehicle or ship for permanent disposal. Disposal containers can be susceptible to damage due to impacts during transportation, handling, and loading, leading to potential damage to the radiation primer coating during loading. Additionally, disposal containers may be subject to damage from electrochemical corrosion, necessitating the enhancement of corrosion resistance. Metal composite coatings can be employed to enhance both abrasion resistance and corrosion resistance. The application of metal composite coatings to disposal containers can improve the durability and radiation shielding performance of radioactive waste disposal containers. The thickness of radioactive waste disposal containers is determined through radioactive shielding analysis during the design process. The designed disposal containers undergo structural analysis, considering loading conditions based on the disposal environment. This paper focuses on evaluating the structural improvements achieved through the implementation of metal composite coatings with the goal of enhancing corrosion and abrasion resistance.

저자
  • Ji-Hoon Kang(FNC Technology Co., Ltd.) Corresponding author
  • Dong-Seok Lim(FNC Technology Co., Ltd.)
  • Woo Young Jung(FNC Technology Co., Ltd.)
  • Hyun Chul Lee(FNC Technology Co., Ltd.)