논문 상세보기

Preliminary Study for Site Remediation Strategies Focusing on the Distribution Coefficient and Hydrogeological Characteristics

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/431498
모든 회원에게 무료로 제공됩니다.
한국방사성폐기물학회 학술논문요약집 (Abstracts of Proceedings of the Korean Radioactive Wasts Society)
한국방사성폐기물학회 (Korean Radioactive Waste Society)
초록

The operation of nuclear facilities involves the potential for on-site contamination of soil, primarily resulting from pipe leaks and other operational incidents. Globally, decommissioning process for commercial nuclear power plants have revealed huge-amounts of soil waste contaminated with Cs-137, Sr-90, Co-60, and H-3. For example, Connecticut Yankee in the United States produced approximately 52,800 ton of contaminated soil waste, constituting 10% of the total waste generated during its decommissioning. Environmental remediation costs associated with nuclear decommissioning in the US averaged $60 million per unit, representing a significant 10% of the whole decommissioning expenses. Consequently, this study undertook a preliminary investigation to identify important factors for establishing a site remediation strategy based on radionuclide- and site-specific media- characteristics, focusing the efficiency enhancement for the environmental remediation. The factors considered for this investigation were categorized into physical/environmental, socioeconomic, technical, and management aspects. Physical/environmental factors contained the site characteristics, contamination levels, and environmental sensitivity, while socio-economic factors included the social concerns and economic costs. Technical and management factors included subcategories such as technical considerations, policy aspects, and management factors. Especially, technical factors were further subdivided to consider the site reuse potential, secondary waste generation by site remediation, remediation efficiency, and remediation time. Additionally, our study focused the key factors that facilitate the systematic planning for the site remediation, considering the distribution coefficient (Kd) and hydrogeological characteristics associated with each radionuclide in specific site conditions. Therefore, key factors in this study focus the geochemical characteristics of site media including the particle size distribution, chemical composition, organic and inorganic constituents, and soil moisture content. Moreover, the adsorption properties of site media were examined concerning the distribution coefficient (Kd) of radionuclides and their migration characteristics. Furthermore, this study supported the development of a conceptual framework, containing the remediation strategies that incorporate the mobility of radionuclides, according to the site-specific media. This conceptual framework would necessitate the spatial analysis techniques involving the whole contamination surveys and radionuclide mobility modeling data. By integrating these key factors, the study provides the selection and simulation of optimal remediation methods, ultimately offering the estimated amounts of radioactive waste and its disposal costs. Therefore, these key factors offer foundational insights for designing the site remediation strategies according the sitespecific information such as the distribution coefficient (Kd) and hydrogeological characteristics.

저자
  • In-Ho Yoon(Korea Atomic Energy Research Institute (KAERI)) Corresponding author
  • Ilgook Kim(Korea Atomic Energy Research Institute (KAERI))
  • KwanSeong Jeong(Korea Atomic Energy Research Institute (KAERI))
  • Youngho Sihn(Korea Atomic Energy Research Institute (KAERI))
  • Chan Woo Park(Korea Atomic Energy Research Institute (KAERI))
  • Geun-Ho Kim(Korea Atomic Energy Research Institute (KAERI))