2011년 동일본대지진에 의해 발생한 후쿠시마 원자력 발전소 사고와 최근 국내 지진 발생 빈도의 증가는 원자력 발전소의 지진 안전성에 대한 불안감을 야기하였다. 더불어 최근(2021년) 일본 동경전력은 후쿠시마 원전 오염수의 태평양 방류를 결정하였으며, 이로 인해 국내외 수산물을 통한 방사능 오염 가능성이 높아지면서 국민들의 우려가 급증하고 있다. 후쿠시마 원전사고 이후 해양으로 의 인공방사능 유입에 관한 연구는 국제적으로 많이 이루어졌으나, 한국인의 주요 식재료인 동아시아 연근해의 수산물에서 인공방사능의 분포 현황 및 축적에 대한 연구는 상대적으로 부족한 실정이다. 따라서 이 논문에서는 후쿠시마 원전사고 이후, 국내산 수산물에서의 원전 기원 인공방사능(예, 137Cs, 239,240Pu, 90Sr 등)의 분포 특성과 관련한 최근 연구 사례들을 소개하고자 한다. 또한, 후쿠시마 원전 오염수의 방류와 더불어 2030년까지 계획된 중국의 신규 원전 시설로 인한 향후 한반도 주변해역의 방사능 유출 영향에 대한 대비 및 사전 연구가 필요한 시점이기에 향후 연구 방향들을 제안하고자 한다.
장과류의 방사능 안전성 확보를 위해 2016년부터 2018년까지 경기도 내 유통 중인 장과류 및 가공식품 15품목 258건을 수거하여 방사능 오염을 분석하였다. 방사능 분석은 게르마늄 감마핵종 분석기를 이용하였으며, 인공 방사성 물질인 요오드(131I)와 세슘(134Cs, 137Cs)을 분석하였다. 모든 제품에서 131I와 134Cs은 MDA (Minimum Detectable Activity)값 이상으로 검출되지 않았고, 39건에서 0.69-808.90 Bq/kg 범위로 137Cs이 검출되었다. 국내산 제품 6건은 0.70- 3.29 Bq/kg 범위에서 검출되었지만, 원재료는 모두 수입산 이었다. 수입산 제품 33건은 0.69-808.90 Bq/kg 방사능 농도를 나타내었으며, 폴란드산 블루베리 분말 제품 1건(808.90 Bq/kg) 및 링곤베리 분말 제품 2건(103.93, 188.46 Bq/kg)은 국내 방사성 세슘의 허용 기준을 초과하였다. 이러한 결과는 식품 안전 확보를 위해 수입산 장과류와 장과류 가공식품에 대한 방사능 검사 강화와 함께 수입 과정에서 더 철저한 관리가 필요한 것으로 판단된다.
경기도내 유통되는 식용 버섯류의 방사능 안전성을 확보하기 위해, 버섯 종류별, 원산지별 샘플을 수거하여 방사능 오염도를 분석하였다. 버섯류 10종(표고버섯, 느타리버섯, 새송이버섯, 양송이버섯, 팽이버섯, 상황버섯, 차가버섯, 목이버섯, 영지버섯, 송이버섯) 총 284건을 수거하여 방사능 검사를 수행하였다. 인공방사성물질인 131I, 134Cs 와 137Cs의 방사능 농도는 감마선 측정 장비로 분석하였다. 모든 버섯 샘플에서 131I과 134Cs은 MDA 값 이상에서 검출되지 않았다. 그러나 국내산 204건 중 총 6건(표고버섯 3건, 영지버섯 1건, 송이버섯 2건)에서 137Cs 이 0.21~2.58 Bq/kg 검출되었고, 수입산 80건 중 총 38건 (차가버섯 22건, 상황버섯 14건, 표고버섯 1건, 송이버섯 1건)에서 137Cs이 0.21~53.79 Bq//kg 검출되었다. 그리고 차가버섯을 이용한 가공품 10건에서는 건조 차가버섯에 비해 평균 2배 이상의 137Cs가 검출되었고, 최고 123.79 Bq/ kg이 확인되었다. 이와 같은 결과를 종합하여 볼 때, 식품 안전 확보를 위해 일부 수입 버섯류와 가공품에 대한 방사능검사 강화와 함께 지속적인 모니터링이 필요하다 하겠다.
With South Korea increasingly focusing on nuclear energy, the management of spent nuclear fuel has attracted considerable attention in South Korea. This study established a novel procedure for selecting safety-relevant radionuclides for long-term safety assessments of a deep geological repository in South Korea. Statistical evaluations were performed to identify the design basis reference spent nuclear fuels and evaluate the source term for up to one million years. Safety-relevant radionuclides were determined based on the half-life criteria, the projected activities for the design basis reference spent nuclear fuel, and the annual limit of ingestion set by the Nuclear Safety and Security Commission Notification No. 2019-10 without considering their chemical and hydrogeological properties. The proposed process was used to select 56 radionuclides, comprising 27 fission and activation products and 29 actinide nuclides. This study explains first the determination of the design basis reference spent nuclear fuels, followed by a comprehensive discussion on the selection criteria and methodology for safety-relevant radionuclides.
Within the air purification system of a nuclear power plant, specific radioactive isotopes are extracted from gases through adsorption onto activated carbon. To properly dispose of used activated carbon, it is essential to determine the concentration of radioactive nuclides within it. This study discusses the application of the pyrolysis method for analyzing the concentrations of 3H and 14C in spent activated carbon. The pyrolysis was conducted using Raddec’s Pyrolyser, with adjustments made to parameters such as temperature profiles, airflow rates, sample quantities, and trapping solution volumes. The evaluation method for the pyrolysis of activated carbon to analyze 3H and 14C involved adding 3H and 14C sources to the activated carbon before use and subsequently assessing the recovery rates of the added sources in comparison to the analysis results.
In the decommissioning process of nuclear power plants, Ni-59, Ni-63 and Fe-55 present in radioactive waste are crucial radionuclides used as fundamental indicators in determining waste treatment methods. However, due to their low-energy emissions, the chemical separation of these two radionuclides is essential compared to others. Therefore, this study aims to evaluate the suitability of various pre-treatment methods for decommissioning waste materials by conducting characteristic assessments at each chemical separation stage. The goal is to find the most optimized pre-treatment method for the analysis of Ni-59, Ni-63 and Fe-55 in decommissioning waste. The comparative evaluation results confirm that the chemical separation procedures for Fe and Ni are very stable in terms of stepwise recovery rates and the removal of interfering radionuclides. However, decommissioning waste materials, which mainly consist of concrete, metals, etc., possess unique properties, and a significant portion may be low-radioactivity waste suitable for on-site disposal. Considering that the chemical behavior and reaction characteristics may vary at each chemical separation stage depending on the matrix properties of the materials, it is considered necessary to apply cascading chemical separation or develop and apply individual chemical separation methods. This should be done by verifying and validating their effectiveness on actual decommissioning waste materials.
This study presents distribution of naturally occurring radioactive materials in groundwater in Jeju island. Radon (222Rn) and potassium (40K) concentrations were performed by using Liquid Scintillation Counter and Ion Chromatograph respectively. In addition, the activities of uranium and thorium nuclides were analyzed by Inductively Coupled Plasma Mass Spectroscopy. Groundwater samples were collected from 9 sites of water intake facilities for wide area supply in Jeju island from September 2022 to September 2023. The 40K concentrations of groundwater ranged between 0.050 and 0.400 Bq·L-1. The radon concentrations in groundwater were in the range of 0 to 60 Bq L-1, and there was no groundwater exceeding the range of 148 Bq L-1 proposed by the US EPA. The distribution of uranium and thorium in groundwater varied from 0 to 500 ng L-1 and 0 to 2.4 ng L-1, respectively. The concentrations of uranium did not exceed 30 μg L-1, thresholds indicated by the US EPA. By analyzing the concentrations of 40K, 222Rn, 238U and 232Th, the annual effective dose of residents can be assessed. The evaluated residents’ effective dose from natural radionuclides due to intake of drinking water is less than the recommended value of 100 μSv y-1. Consequently, this study indicates that the cancer risks of the residents in Jeju island from naturally occurring radioactive materials ingested with water is insignificant.
The inorganic scintillator used in gamma spectroscopy must have good efficiency in converting the kinetic energy of charged particles into light as well as high light output and high light detection efficiency. Accordingly, various studies have been conducted to enhance the net-efficiency. One way to improve the light yield has been studied by coating scintillators with various nanoparticles, so that the scintillation light can undergo resonance on surface between scintillators and nanoparticles resulting in higher light yield. In this study, an inorganic scintillator coated with CsPbBr3 perovskite nanocrystals using dip coating technique was proposed to improve scintillation light yield. The experiment was carried out by measuring scintillation light output, as the result of interaction between inorganic scintillator coated with CsPbBr3 perovskite nanocrystals and gamma-ray emitted from Cs-137 gamma source. The experimental results show that the channel corresponding to 662 keV full energy peak in the Cs-137 spectrum shifted to the right by 14.37%. Further study will be conducted to investigate the detailed relationships between the scintillation light yield and the characteristics of coated perovskite nanoparticles, such as diameter of nanoparticles, coated area ratio and width of coated region.
The mobility of radionuclides in the subsurface environment is governed by a interaction of radioactivity characteristics and geochemical conditions with adsorption reactions playing a critical role. This study investigates the characteristics and mechanisms of radionuclides adsorption on site media in viewpoint of nuclear safety, particularly focusing on the potential effect of seawater infiltration in coastal site near nuclear power plant. Seawater intrusion alters the chemistry in groundwater, including parameters such as pH, redox potential, and ionic strength, thereby affecting the behavior of radionuclides. To assess the safety of site near nuclear power plant and the environmental implications of nuclide leakage, this research conducted various experiments to evaluate the behavior of radionuclides in the subsurface environment. High distribution coefficients (50-2,500 ml/g) were observed at 10 mg/L Co, with montmorillonite > hydrobiotite > illite > kaolinite. It decreased with competing cations (Ca2+) and was found to decrease significantly by 90% with a decrease in pH to 4. It is believed that the adsorption capacity of cationic radionuclides decreases significantly as the clay mineral surface becomes less negatively charged. For Cs, the distribution coefficient (180-560 ml/g) was higher for montmorillonite > hydrobiotite > illite > kaolinite. Compared to Co, it was found to be less influenced by pH and more influenced by competing cations. For Sr, the distribution coefficient (100-380 ml/g) was higher in the order of hydrobiotite > montmorillonite > illite > kaolinite. Compared to Cs, it was found to be less affected by pH and also less affected by the effect of competing cations compared to Cs. Seawater samples from Gampo and Uljin site near Nuclear Power Plant in Korea were analyzed to determine their chemical composition, which was subsequently used in adsorption experiments. Additionally, the seawater-infiltrated groundwater was synthesized in laboratory according to previous literature. The study focused on the adsorption and behavior of three key radionuclides such as cesium, strontium, and cobalt onto four low permeability media (clay minerals) such as kaolinite, illite, hydrobiotite, and montmorillonite known for their high adsorption capacity at a site of nuclear power plant. At concentrations of 5 and 10 mg/L, the adsorption coefficients followed the order of cobalt > cesium > strontium for each radionuclide. Notably, the distribution coefficient (Kd) values exhibited higher values in seawater-infiltrated groundwater environments compared to seawater with relatively high ionic strength. Cobalt exhibited a substantial adsorption coefficient, with a marked decrease in Kd values in seawater conditions due to elevated ionic strength. In contrast, cesium displayed less dependency on seawater compared to other radionuclides, suggesting distinct adsorption mechanisms, possibly involving fractured edge sites (FES) in clay. Strontium exhibited a significant reduction in adsorption in seawater compared to groundwater in all Kd sorption experiments. The adsorption data of cobalt, cesium, and strontium on clay minerals in contact with seawater and seawater-infiltrated solutions offer valuable insights for assessing radioactive contamination of groundwater beneath coastal site near nuclear power plant sites. This research provides a foundation for enhancing the safety assessment protocols of nuclear power plant sites, considering the potential effects of seawater infiltration on radionuclide behavior in the subsurface environment.
Nuclear facilities present the important task related to the migration and retention of radioactive contaminants such as cesium (Cs), strontium (Sr), and cobalt (Co) for unexpected events in various environmental conditions. The distribution coefficient (Kd) is important factor for understanding these contaminants mobility, influenced by environmental variables. This study focusses the prediction of Kd values for radionuclides within solid phase groups through the application of machine-learning models trained on experimental data and open source data from Japan atomic energy agency. Three machine-learning models, such as the convolutional neural network, artificial neural network, and random forest, were trained for prediction model of the distribution coefficient (Kd). Fourteen input variables drawn from the database and experimental data, including parameters such as initial concentration, solid-phase characteristics, and solution conditions, served as the basis for model training. To enhance model performance, these variables underwent preprocessing steps involving normalization and log transformation. The performances of the models were evaluated using the coefficient of determination. These results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. These models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and longterm risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.
To effectively assess the inventory of radionuclides generated from nuclear power plants using a consistent evaluation method across diverse groups, it is imperative to analyze the similarity in radioactive distribution between these groups. Various methodologies exist for evaluating this similarity, and the application of statistical approaches allows us to establish similarity at a specific confidence level while accounting for the dataset size (degrees of freedom). Initially, if the variance characteristics of the two groups are similar, a t-test for equal variances can be employed. However, if the variance characteristics differ, methods for unequal variances should be applied. This study delineates the approach for assessing the similarity in radioactive distribution based on the analytical characteristics of the two groups. Furthermore, it delves into the results obtained through two case studies to offer insights into the assessment process.
A disposal system for spent nuclear fuel mainly divides into two parts; Engineered barriers include spent nuclear fuel, canister, buffer and backfill and natural barriers mean a host rock surrounding engineered barriers. If radionuclides released from a repository, they can migrate to the ecosystem. Sorption plays an important role in retarding the migration of released radionuclides. Hence, the safety assessment for the disposal of a spent nuclear fuel should consider the migration and retardation of radionuclides in geosphere. Distribution coefficient is one of input parameters for the safety assessment. In this work, distribution coefficients for crystalline rock as a natural barrier were collected and evaluated for the purpose of safety assessment for the deep geological disposal of a spent nuclear fuel. The radionuclides considered in this work are as follows; alkali and alkaline earth metals (Cs, Sr, Ba), lanthanides (Sm), actinides (Ac, Am, Cm, Np, Pa, Pu, Th U), transition elements (Nb, Ni, Pd, Tc, Zr), and others (C, Cl, I, Rn, Se, Sn). The sorption of radionuclides is influenced by various geochemical conditions such as pH/carbonates, redox potential, ionic strength, radionuclide concentration, kinds and amounts of minerals, and microbes. For the evaluation of distribution coefficients, the data from Sweden (SKB), Finland (Posiva), Switzerland (Nagra), and Japan (JAEA) were collected, analyzed, and the recommended distribution coefficients have been suggested.