This study is about the optical properties of InP-based quantum dot nanoparticles depending on their core/shell structure. The need to synthesize non-cadmium-based quantum dot nanoparticles with high quantum efficiency has become necessary due to the harmful effects of the element cadmium. We synthesized three types of quantum dot nanoparticles in 2000ml three-necked flasks by varying the synthesis temperature and time to have the same PL spectra according to the composition of the core and shell. The PL spectra, absolute quantum efficiency, and nanoparticle size were compared and analyzed according to the composition at red emission wavelengths of 614, 616, and 630 nm. InP/ZnSe/ZnS nanoparticles were synthesized with the highest PL-AQY of 94% at 614 μm, and Ga-doped InP/GaP/ZnSe/ZnS nanoparticles were synthesized with the highest PL-AQY of 97% at 616 μm. InZnP/ZnSe/ZnS nanoparticles with alloy cores were able to synthesize quantum dot nanoparticles with a peak PL-AQY of 98% at 630μm.