This study was conducted to simulate the lifetime of the membrane by analyzing the performance of the membrane degraded by chlorine. Chlorine exposure under several conditions caused the degradation of the membrane, resulting in the absence of any salts and an extreme increase in permeability. When the n value was calculated and compared through CnT analysis and CTn analysis, the p values were all less than 0.005, but CTn analysis, which had a higher R2 value, was adopted to simulate the membrane lifetime. Power coefficients take on values higher than 1, indicating that the exposure time to chlorine has a greater influence on membrane deterioration than the chlorine exposure concentration at 20℃ and 30℃. In particular, the process should be operated at less than 0.5 ppm at 30°C, and the chlorine exposure time of 1 cycle should be set to within 15 hours. In addition, the sensitivity to chlorine increased by 10.5 to 12.2 times when the chlorine exposure temperature increased by 10°C through the correlation between the chlorine exposure cycle and membrane lifetime. The membrane lifetime investigated in this study is only an estimated value, entirely because of chlorine membrane deterioration, excluding raw water characteristics and the type of detergent. Accordingly, it is considered that the membrane lifetime simulation can be applied by comparing the membrane performance with the actual process based on the filtration performance of membrane deterioration by chlorine.