검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 152

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to simulate the lifetime of the membrane by analyzing the performance of the membrane degraded by chlorine. Chlorine exposure under several conditions caused the degradation of the membrane, resulting in the absence of any salts and an extreme increase in permeability. When the n value was calculated and compared through CnT analysis and CTn analysis, the p values were all less than 0.005, but CTn analysis, which had a higher R2 value, was adopted to simulate the membrane lifetime. Power coefficients take on values higher than 1, indicating that the exposure time to chlorine has a greater influence on membrane deterioration than the chlorine exposure concentration at 20℃ and 30℃. In particular, the process should be operated at less than 0.5 ppm at 30°C, and the chlorine exposure time of 1 cycle should be set to within 15 hours. In addition, the sensitivity to chlorine increased by 10.5 to 12.2 times when the chlorine exposure temperature increased by 10°C through the correlation between the chlorine exposure cycle and membrane lifetime. The membrane lifetime investigated in this study is only an estimated value, entirely because of chlorine membrane deterioration, excluding raw water characteristics and the type of detergent. Accordingly, it is considered that the membrane lifetime simulation can be applied by comparing the membrane performance with the actual process based on the filtration performance of membrane deterioration by chlorine.
        4,000원
        3.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the OPR1000, a standard power plant in Korea, an analytical model of the containment building considering voids and deterioration was built with multilayer shell elements. Voids were placed in the vulnerable parts of the analysis model, and the deterioration effects of concrete and rebar were reflected in the material model. To check the impact of voids and deterioration on the seismic performance of the containment building, iterative push-over analysis was performed on four cases of the analytical model with and without voids and deterioration. It was found that the effect of voids with a volume ratio of 0.6% on the seismic performance of the containment building was insignificant. The effect of strength reduction and cross-sectional area loss of reinforcement due to deterioration and the impact of strength increase of concrete due to long-term hardening offset each other, resulting in a slight increase in the lateral resistance of the containment building. To determine the limit state that adequately represents the seismic performance of the containment building considering voids and deterioration, the Ogaki shear strength equation, ASCE 43-05 low shear wall allowable lateral displacement ratio, and JEAC 4601 shear strain limit were compared and examined with the analytically derived failure point (ultimate point) in this study.
        4,000원
        7.
        2024.04 구독 인증기관·개인회원 무료
        국내 건축물에서는 노후한 철근콘크리트 구조물의 안전성이 중요한 문제로 대두되고 있다. 구조물 부분이나 전체의 무너짐으로 인해 경제적 손실을 초래할 수 있으며, 이는 주로 구성 재료의 내구성 결 함으로 인해 발생한다. 여러 노후화 인자 중 동결융해와 부식은 주요한 열화 요인으로 작용한다. 동결 지역의 구조물은 동결융해가 위험 요소로 작용할 수 있으며, 해양 구조물은 해수에 존재하는 염소이온 에 의해 부식될 수 있다. 이러한 문제를 해결하기 위해서는 복합 열화 작용과 철근콘크리트 부재의 성 능 저하 관계를 이해하는 것이 필요하다. 본 연구는 동결융해와 부식의 복합적 피해가 RC 보의 거동 에 미치는 영향을 실험적으로 조사하였다. 7개의 RC 보를 제작하여 각각 다른 수준의 열화 조건을 부여한 후 휨 시험을 실시하였다.
        9.
        2023.11 구독 인증기관·개인회원 무료
        In Natural Analogue Study, Concrete is one of the important engineering barrier components in the Multi-thin wall concept of radioactive waste disposal and plays the most important role in disposal sites. The concrete barrier at the disposal site loses its role as a barrier due to various deterioration phenomena such as settlement, earthquake, and ground movement, causing the disposed waste to leak into the natural ecosystem. Some of the key factor is deterioration triggered by sulfate attack. Concrete deterioration induced by sulfate is commonly manifested in an extensive scale when a concrete structure makes contact with soil or water, aggravating its performance. In this study, an accelerated concrete deterioration evaluation experiment was performed using a total of three experimental methods to evaluate the reaction between concrete and water. The first experiment was a deterioration evaluation using Demi. Water, the second was a deterioration evaluation using KURT groundwater after extraction, and the last experiment was a concrete deterioration evaluation using KURT groundwater and sodium sulfate. For all of these experiments, accelerated concrete deterioration experiments were conducted after immersion for a total of 365 days, and specimens were taken out at 30-day intervals and characterization analysis such as SEM and EDS was performed. Experimental analyzes have shown that various chemical species are generated or destroyed over time. In the future, we plan to continue to conduct a total of three concrete deterioration evaluation experiments above, and additionally evaluate the chemical reaction between bentonite and concrete.
        10.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        철근콘크리트는 가장 널리 사용되는 건축자재로 최근 노후 시설물이 증가하면서 노후 구조물에 대한 안전성 검토가 매우 중요한 문제로 대두되고 있다. 본 연구에서는 대표적인 열화 인자인 동결융해와 철근부식 그리고 동결융해와 철근부식의 복합적 열화에 따른 RC 휨 부재의 거동을 실험적으로 평가하였다. 4개의 철근콘크리트 휨 부재를 제작하였으며 각 열화 인자에 따른 RC 휨 부재의 거동을 평가하기 위해 4점 재하법을 이용하여 정적실험을 수행하였다. 동결융해는 총 300 사이클의 급속동 결융해실험을 수행하였으며, 부식은 전위차부식촉진실험을 수행하였다. 실험 결과, 동결융해로 인해 콘크리트의 압축강도가 12% 감소하였으며 RC 보 부재의 상부 압축부의 파쇄 범위가 증가하였고 최대강도가 6% 감소하였다. 철근부식으로 인해 RC 휨 부 재의 항복강도가 1.2%, 최대강도가 7% 감소하였으며, 복합열화로 인해 RC 휨 부재의 항복강도가 2.4%, 최대강도가 9% 감소하 였다.
        4,000원
        11.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to analyze the income structure, cost structure, and profit structure based on data related to the business performance of the boat seine fishery from 1990 to 2020, and to identify the direct and indirect factors affecting fishery profitability through panel regression analysis. The main analysis results are as follows. First, it was found that fish catch has a significant amount of impact on fishery profitability, which is a key factor in improving the profitability of anchovy boat seine fishery. Second, it is necessary to develop carbon-reduced fishing gear, develop fleet-reduced fishing gear, and improve the operating system in order to increase fishery profitability for the short run. Third, it is necessary to create and maintain sustainable profitability for the long run, the continuous fishing vessels buyback program, an active responses to climate change, and the follow-up investigations about marine aggregate extraction in the south sea EEZ are needed.
        4,000원
        16.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Recently, air pollution caused by particulate matter has been worsening. Among the substances generating particulate matter, NOx is the main precursor of particulate matter and is widely distributed in areas with a high volume of traffic. TiO2 has been used as a material for removing NOx through a chemical reaction as a photocatalyst. In this context, the reduction of NOx through TiO2 concrete is proposed. However, the research on the surface deterioration on the performance of TiO2 concrete is not documented yet. Therefore, the objective of this study was to evaluate the long-term durability and NOx removal efficiency of TiO2 concrete by considering the concrete surface deterioration. METHODS : Freezing–thawing resistance test (KS F 2456) and scaling test (ASTM C 672) were performed to investigate the variation in the TiO2 penetration distribution and NOx removal efficiency of TiO2 concrete corresponding to surface deterioration. The long-term durability of TiO2 concrete was evaluated through an environmental resistance test and changes in TiO2 penetration depth and distribution characteristics. In addition, the NOx removal efficiency of TiO2 concrete was evaluated as surface deterioration occurs. RESULTS : As a result of the freeze–thawing resistance test, a relative dynamic elastic modulus of more than 80 % was detected. In addition, a TiO2 penetration depth of 0.3 mm, NOx removal efficiency of 11.2 %, and a 30 % of TiO2 surface prediction mass ratio were achieved after 300 cycles. As a result of visual observation of the scaling test, “0, no scaling” was secured. After 50 cycles of scaling test, the TiO2 penetration depth, NOx removal efficiency, and TiO2 surface prediction mass ratio were 0.3 mm, 36.3 %, and 63 %, respectively. Through the results of the environmental resistance test, the excellent long-term durability and NOx removal efficiency of TiO2 concrete were confirmed. CONCLUSIONS : As a result of the experiment, long-term durability and NOx removal efficiency of TiO2 concrete were secured. The application of TiO2 concrete can be a good alternative with long-term performance and durability.
        4,000원
        17.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study is performed first to define the aging of road facilities and to analyze the effects of environmental factors on the deterioration of median barriers. METHODS : The aging of road facilities is defined using an analytical hierarchy process (AHP). The first stage is associated with the period, facilities, and maintenance, whereas the second stage is associated with the details. The effects of environmental factors on the deterioration are analyzed by measuring the carbonation depth and compression strength. Two regions, i.e., Gangwon and Busan, are compared separately. Top, middle, and bottom samples are analyzed for both regions. RESULTS : Based on the result of the AHP analysis, weights for period (0.220), function (0.410), and maintenance (0.370) are derived. The average carbonation depths are 11.12 and 9.78 mm for Kangwon and Busan, respectively. The estimated values of compressive strength at Gangwon are 19.7 MPa (Wonju), 24.7 MPa (Samcheok A), and 25.9 MPa (Samcheok B), 20.2 MPa (Haeundae), 23.8 MPa (Yeongdo), and 29.5 MPa (Nam). CONCLUSIONS : The aging of road facilities is associated with subpar functionality and durability. Furthermore, the median barriers constructed in the Gangwon region deteriorated more significantly than those in the Busan region owing to environmental factors. In addition, the bottom samples are more affected by aging than the top samples.
        4,000원
        20.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.
        4,200원
        1 2 3 4 5