In this study, The recent national interest is focused on the welfare of the people, and new projects in the construction sector are being reduced, and the aging of infrastructure is not getting attention. In domestic case, most of the infrastructures were built in the 1970s to 1980s, and the road extension is also steadily increasing. Therefore, the costs to bridge maintenance from around 2010 by a similar route to that of advanced countries are also 4 times And it is time to pay attention to maintenance as well as construction. Therefore, a study was carried out on the valuation method considering bridge condition evaluation, which is a part of BIM library building and assembly program development. The proposed value evaluation method will be used as an index of the existence of bridges by comparing the cost required for maintenance and reinforcement of the target bridges and the costs required for dismantling and disposal in the bridge management system of the future program
In this study, to develop the basis of damage prediction system for abutment type rigid-frame bridge, measurement data is generated by artificially expressing damage by Abaqus, a commercial structural analysis program, and applied to machine-learning. The rigid-rame bridge structural analysis model is expressed as closely as possible to the actual bridge condition considering the specification, damage expression, analysis method, boundary condition, and load. CNN(Convolutional Neural Network), one of the neural network algorithm, is used for machine-learning and accuracy is confirmed when there was no measurement error as a result of machine learning.
This study investigates elastic flange local buckling of ultra high performance concrete (UHPC) I-girders. The girders were modeled using 3D shell elements (S4R) and analyzed by eigenvalue analysis. Then, the flange local buckling strength from the FE analysis were evaluated according to the flange and web slenderness ratios and compared to the local buckling strength of steel girders. The results shows that the flange local buckling of UHPC I-girders are underestimated compared to the strength of steel girders which has same geometric cross sections and further studies needed related to this field.
This study investigates the flexural shear strength of ultra high performance concrete I-girder. The effect of aspect ratio on the flexural - shear strength of UHPC was analyzed using finite element analysis. The UHPC I-type girder was modeled using 3D shell elements and analyzed using geometric and material nonlinear analysis. The boundary condition is simple support condition and a displacement load is applied to the center of the upper flange. The results shows that shear strength decreased as the aspect ratio increased and the bending-shear failure of UHPC I-girder does not occur even at larger moment than ordinary concrete due to the cross-linking action of steel fiber.
Prestress is a reinforcement method to control crack due to moment on concrete girders with low tensile strength. In the existing literature, it is mentioned that prestress for ordinary concrete affects not only crack control but also shear strength enhancement. As the construction material improves, UHPC(Ultra-HIgh Performance Concrete) with excellent strength and ductility has been developed by combining ultra-high strength concrete and steel fiber. However, study on the effect of prestress on the shear strength of UHPC with different material properties from ordinary concrete is lacking. Therefore, in this paper, the effect of prestress on the shear behavior of UHPC I-girder is studied by finite element analysis. As a result of the analysis, it has been confirmed that the prestress increases crack strength and shear strength of UHPC.
In this study, elastic flange local buckling strength of doubly symmetric I-girder subjected to bending moment were evaluated by 3D finite element analysis. The analysis model were modeled by 3D shell elements(S4R) using ABAQUS 6.13 program. And loading and boundary conditions were determined by equal end moments and simple boundary conditions. Flange and web slenderness ratio were considered in the parametric studies to evaluate flange local buckling strength with AISC design equations. Then, AISC design equations and characteristics of Elastic flange local buckling of I-girder were evaluated.
Concrete has been widely used for material of bridge girder. However, Concrete is considered as inefficient material for long-span girder. Because it has low material strength compared with those of steel girder, huge cross sectional area are required to have same strength of steel girder bridges. UHPC(Ultra High Performance Concrete) as new material is developed to supplement this weakness of concrete. UHPC has high compressive strength and show softness behavior due to it is reinforced by fiber. If UHPC has no any reinforcement for shear, diagonal tension crack failure is dominant like normal concrete. So, reinforcement for shear is essential and prestress is efficient method of reinforcement for UHPC due to high compressive strength. However, design equation for shear strength suggested by K-UHPC Certification(2012) do not consider prestress effect. Therefore, this study investigate effect of prestress for shear strength of ultra high performance concrete I-girder by using finite element analysis program
This study investigates strength of unstiffened flanges in horizontally curved box girders under different curvature by using Abaqus 6.13 which is finite element method program. When horizontally curved girder is subjected to simple vertical load, bending moment and torsional moment occur at the same time different from straight girder. This torsional moment cause torsion and distortion on box section. Because of such phenomenon, longitudinal stress is non-uniformly distributed on flange of curved box girder. Non-uniformely distributed stress make strength of flange lower. Although demand of curved girder is increasing due to complexification of urban, it is only AASHTO(2012) that has certification for curved girder. But equation for curved girder in AASHTO(2012) neglect almost of curvature effect. Box girder is usually used for curved girder due to their superb torsional properties. So, we need more study for strength of curved box girder flange.
It is same such as the provision of shear buckling strength of steel composite box girder web panel and plate girder web panel in Korea Highway Bridge Design Standards(2012). But the web panel of steel composite box girder is different from the web of plate girder in that the upper slab and lower flange are connected to the web. So a different shear behavior of the girders is expected. In this study, To calculate a reasonable elastic shear buckling strength of steel composite box girder web panel, ABAQUS program was used. The results from F.E.A and previous studies are compared.
본 연구에서는 수평 곡선 박스 거더의 곡률에 따른 비보강 플렌지 강도를 유한요소 해석 프로그램인 Abaqus 6.13을 사용하여 분석하였다. 곡선보에서는 직선보와는 달리 단순한 수직 하중에도 휨 모멘트와 비틀림 모멘트가 동시에 발생한다. 그리고 이 비틀림 모멘트가 곡선보의 비틀림과 뒤틀림을 유발하여 최종적으로 플렌지에 응력이 비균등하게 분포하게 된다. 플렌지의 비균등한 응력 분포는 플렌지의 강도에 크게 영향을 미치는데, 곡률의 크기가 커질수록 비틀림 모멘트도 커지기 때문에 곡선보에서 곡률의 고려는 불가피하다. 날로 복잡해져 가는 교통 문제를 해결하기 위한 도로의 입체화 및 순환도로 건설의 증가 추세에 따라 곡선교의 수요는 지속적으로 증가하고 있는 추세이다. 곡선교에서는 구조적 안정성 측면에서 유리한 강박스 거더가 많이 사용된다. 그러나 현재 국내에서는 곡선보에 대한 뚜렷한 설계기준이 없고, 국외에서도 곡선보에 대한 설계기준을 포함하고 있는 것은 AASHTO(2012)가 유일하다. 하지만 AASHTO(2012)에서도 비틀림 뒴 응력과 뒤틀림 뒴 응력을 무시하고 직선보로 이상화할 수 있도록 곡률을 제한하여 설계식을 제시하고 있다. 곡선 I형 거더에 대해서는 많은 연구가 진행되고 있지만 박스형 거더에 대한 연구는 미비한 실정이므로 곡선 박스 거더의 곡률에 따른 강도 연구가 필요하다.