In this study, a composite material suitable for flexible transparent electrodes was fabricated using Norland Optical Adhesive 68 (NOA 68), an ultraviolet (UV) curable polymer, and silver nanowires (Ag nanowire, AgNW). The mechanical behavior of this composite was then analyzed. A AgNW network structure was embedded in the NOA 68 polymer and cured using UV energy. The composite was prepared with an AgNW network structure formed approximately 4 μm from the top of the NOA 68 matrix. Tensile test specimens were prepared according to ASTM standards, and tensile tests were conducted at room temperature in air. Scanning electron microscopy (SEM) and tensile tests were used to analyze the changes in mechanical behavior according to UV exposure time and the presence of AgNW. The results showed that as UV curing time increased, the yield strength of the composite increased while the elongation decreased. Regardless of the presence of the AgNW filler, the stress-strain curves of the ductile polymer exhibited the typical mechanical behavior of semi-crystalline polymers as UV curing time increased, characterized by strain softening. It was also confirmed that the composite impregnated with AgNW exhibited higher strength in response to changes in mechanical properties due to UV curing.