Analysis of Factors Influencing the Severity of Traffic Crashes by Type of Traffic Crashes on Personal Mobility Using Random Forest Model and SHAP Technique
In this study, we aim to classify personal mobility (PM)-related traffic crash data into four categories: PM-to-vehicle, PM-to-pedestrian, PM-single, and vehicle-to-PM crashes, and analyze the factors influencing the severity of each crash type. To overcome the limitations of existing studies in explaining the impact of independent variables on ordinal dependent variables, a random forest model was combined with the Shapley additive explanation technique. This approach visualizes the influence of independent variables on a dependent variable, providing clearer insights and enhancing interpretability. The analysis of PM traffic accidents, categorized into at-fault, single-vehicle, and victim accidents, revealed distinct key factors for each type. The main contributors to the severity of crashes caused by PM are traffic violations by teenagers and collisions with elderly pedestrians. Single-vehicle accidents were predominantly caused by overturn incidents, with inadequate driving skills among PM users aged 40 years and older, and significantly increasing severity. Victim accidents primarily occur at intersections, where the behavior of the at-fault driver and age of the PM user are critical factors influencing the severity. We identified various factors influencing the severity of PM crashes by type, highlighting the need for tailored policy measures. Proposed policies include physically separating bicycle–pedestrian shared spaces and strictly regulating illegal PM sidewalk riding, introducing PM licenses for teenagers to ensure compliance with traffic rules, and implementing regular safety education programs for all age groups. Although this study applied a new analytical technique, it relied on limited crash data, thus limiting the results to estimates.