간행물

한국육종학회 심포지엄

권호리스트/논문검색
이 간행물 논문 검색

권호

2012 한국육종학회 식물분자육종사업단 공동국제심포지엄 (2012년 7월) 332

281.
2012.07 서비스 종료(열람 제한)
Organ size control is a fundamental developmental processes for higher plants as well as a promising target trait for molecular breeding in crop plants. Genetic mechanisms how plant organs grow to a certain size remains still unclear. Here we present the identification and characterization of a genetic mutant, big flower1-1 (bif1-1) in Arabidopsis that exhibits bigger organ size primarily due to increased cell size. Genetic analysis indicated that it is a single, semi-dominant mutation. Phenotypic analysis showed that bif1-1 exerts pleiotropic effects: it caused bigger seed size, bigger seedling, bigger leaf, thicker stem, increased trichome branching, smaller fruit, and bigger pollen. Microscopic analysis suggested that the bigger organ size in bif1-1 mutant is primarily attributed to increased cell size. Gene expression analysis indicated that most of growth-control genes tested were not altered in bif1-1 mutant. Instead, expression of ARGOS and auxin-inducibility of ANT were reduced in bif1-1 mutant. Our ongoing positional on the corresponding gene would not only shed light on the molecular mechanisms how plants adopt final organ size but also provide a promising genetic resource for genetic engineering of flower- and seed-size in crop plants.
282.
2012.07 서비스 종료(열람 제한)
The molecular responses to various abiotic stresses were investigated by the approaches with transcriptomic analysis based on an ACP system. Here we identified differentially expressed genes under abiotic stresses in alfalfa seedlings and they were mostly unknown genes and a few common stress-related genes. Among them, mitochondrial small HSP23 was responded by the diverse stress treatment such as heat, salt, As stresses and thus it could be a strong candidate that may confer the abiotic stress tolerance to plants. When expressed in bacteria, recombinant MsHSP23 conferred tolerance to salinity and arsenic stress. Furthermore, MsHSP23 was cloned in a plant expressing vector and transformed into tobacco, a eukaryotic model organism. The transgenic plants exhibited enhanced tolerance to salinity and arsenic stress under ex vitro conditions. In comparison to wild type plants, the transgenic plants exhibited significantly lower electrolyte leakage. Moreover, the transgenic plants had superior germination rates when placed on medium containing arsenic. Taken together, these overexpression results imply that MsHSP23 plays an important role in salinity and arsenic stress tolerance in transgenic tobacco. The results of the present study show that overexpression of alfalfa mitochondrial MsHSP23 in both eukaryotic and prokaryotic model systems confers enhanced tolerance to salt and arsenic stress. This indicates that MsHSP23 could be used potentially for the development of stress tolerant transgenic crops, such as forages.
283.
2012.07 서비스 종료(열람 제한)
ChiVMV is one of the most destructive pepper pathogens in the East Asia. The resistant cultivar against ChiVMV is necessary to control the ChiVMV infection to pepper farm. However, the genetic source resistant ChiVMV was not fully identified yet and until now, the only recessive resistance gene has been recognized. In order to study more on the inheritance of the resistance and to establish a breeding program pertinent to ChiVMV resistance, firstly, we screened about 30 lines from several foreign countries, and found a new resistant line from several inoculation tests. Here, we report a new dominantly resistant chili pepper. Secondly, we found two AFLP fragments linked to the dominant resistance, which was located on the pepper chromosome number 6. The newly discovered dominant markers will help develop a new resistant pepper cultivar to ChiVMV.
284.
2012.07 서비스 종료(열람 제한)
Cytoplasmic male sterility caused by DCGMS (Dongbu cytoplasmic and genic male-sterility) cytoplasm and its nuclear restorer-of-fertility locus (Rfd1) with a linked molecular marker (A137) have been reported in radish (Raphanus sativus L.). To construct a linkage map of the Rfd1 locus, linked amplified fragment length polymorphism (AFLP) markers were screened using bulked segregant analysis. A 220-bp linked AFLP fragment sequence from radish showed homology with an Arabidopsis coding sequence. Using this Arabidopsis gene sequence, a simple PCR marker (A220) was developed. The A137 and A220 markers flanked the Rfd1 locus. Two homologous Arabidopsis genes with both marker sequences were positioned on Arabidopsis chromosome 3 with an interval of 2.4 Mb. To integrate the Rfd1 locus into a previously reported expressed sequence tag (EST)-simple sequence repeat (SSR) linkage map, the radish EST sequences located in three syntenic blocks within the 2.4-Mb interval were used to develop single nucleotide polymorphism (SNP) markers for tagging each block. The SNP marker in linkage group 2 co-segregated with male fertility in an F2 population. Using radish ESTs positioned in linkage group 2, five intron length polymorphism (ILP) markers and one cleaved amplified polymorphic sequence (CAPS) marker were developed and used to construct a linkage map of the Rfd1 locus. Two closely-linked markers delimited the Rfd1 locus within a 985-kb interval of Arabidopsis chromosome 3. Synteny between the radish and Arabidopsis genomes in the 985-kbp interval were used to develop three ILP and three CAPS markers. Two ILP markers further delimited the Rfd1 locus to a 220-kb interval of Arabidopsis chromosome 3.
285.
2012.07 서비스 종료(열람 제한)
A dietary deficiency of tryptophan can cause pellagra and lead to low levels of serotonin that is associated with depression, aggression, anxiety and overeating in humans. Thus, enhancement of tryptophan content in rice has great potential benefit for human and animal diets. In this study, a total of 1,350 rice mutant population was used to identify single nucleotide polymorphisms (SNPs) in Oryza sativa anthranilate synthase alpha1(OASA1) gene that was associated with negative feedback in tryptophan biosynthesis. For high-throughput TILLING analysis, 5 fluorescence-labeled primer sets were designed to cover exon regions of OASA1 locus and PCR amplifications were analyzed using ABI3130xl DNA sequencer. Through the screening of 1,350 mutant lines, nine mutant lines produced one or two cleaved fragments in the PCR products of OASA1 locus. The full sequencing of nine mutant lines revealed that total 31 SNPs were located in the regions of OASA1. In particular, three mutant lines contained SNPs in coding regions that resulted in an amino acid change. The tryptophan contents of the three mutant lines were 2.2- to 2.3-fold higher than the wild type. These high-tryptophan mutant lines will be used rice breeding programs and contribute directly to enhancing human nutrition.
286.
2012.07 서비스 종료(열람 제한)
Rye has important genes for biotic and abiotic stress resistance. Introduction of these genes to wheat by breeding wheat-rye translocation have been intensively used in wheat breeding program. Rye chromatin 1RS and/or 2RL show superior performance in unfavorable environments. In order to develop high yielding wheat, we applied various molecular breeding strategies. To develop EST-derived 1RS specific markers, we used comparative genomics with public sequence databases of Poaceae family. Putative rye chromatin specific sequences were used to design 1RS specific markers. To identify genes related to water deficiency, cDNA AFLP analysis was used in PEG treated seedlings of 1RS RILs. For functional analysis of identified genes and markers, we used Brachypodium distachyon, as a new model plant of temperate grasses. B. distachyon were recently applied for transformation and we constructed Agrobacterium-mediated transformation system. Integration of those strategies and conventional breeding method would enhance the usefulness of rye chromatins for wheat improvement.
287.
2012.07 서비스 종료(열람 제한)
In this study, we constructed viral vector for soybean by using Soybean yellow common mosaic virus (SYCMV) infecting both Glycine max and Glycine soja. SYCMV-derived viral vector was tested to use as Virus-induced gene silencing (VIGS) vector for functional analysis of soybean genes and as protein expression vector for foreign protein expression. In vitro transcript with 5’ cap analog m7GpppG from a full-length infectious vector of SYCMV driven by T7 promoter was inoculated to soybean to test infectivity of the clone (pSYCMVT7-full). 5’-capped transcript was able to infect soybean plants. The symptoms observed in soybean plants infected by either the vector or the sap from SYCMV-infected leaves were indistinguishable, suggesting that the vector had an equal biological activity shown by virus itself. To further utilize the vector, an additional DNA-based vector was constructed. The full-length cDNA was inserted into a binary vector flanked by CaMV 35S promoter and the nopaline synthase terminator (pSYCMV35S-full). To test if the vector infects soybean and subsequently induces gene silencing, we prepared two constructs containing fragments of Phytoene desaturase (PDS) gene (pSYCMV35S-PDS1) and small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcS) gene (pSYCMV35S-rbcS2) from soybean plant. Plants infiltrated with the constructs through Agrobacterium-mediated method showed distinct symptoms such as photobleaching in plants infiltrated with pSYCMV-PDS1 and pale green or yellowing in plants infiltrated with pSYCMV-rbcS2. In addition, down-regulations of mRNA levels of two genes were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). To test if the vector can be used for foreign protein expression in soybean plants, we prepared a construct encoding amino acids 135-160 of VP1 FMDV serotype O1 Campos (O1C) (pSYCMV35S-FMDV). Plants infiltrated with the construct through Agrobacterium-mediated method showed that soybean plant infiltrated with pSYCMV35S-FMDV only was detected by Western blotting using O1C antibody. These results support that SYCMV-derived viral vector can be used as VIGS vector or protein expression vector in soybean plants.
288.
2012.07 서비스 종료(열람 제한)
A low temperature-inducible cDNA designated as VrUBC1 from mungbean (Vigna radiata) was isolated by subtractive hybridization method. By rapid amplification of cDNA end technique, the full-length cDNA of VrUBC1 was obtained. The full-length cDNA of VrUBC1 contains an open reading frame of 444 nucleotides in length and capable of specifying a 16.5-kDa protein of 148 amino acids (aa) with an isoelectric point of 7.72. VrUBC1 mRNA was induced by NaCl and ABA, but not by wounding and low temperature stress. It was shown that VrUBC1-GFP was localized to the cytoplasm in tobacco cell. To examine the function of VrUBC1, VrUBC1 was expressed in Escherichia coli as His-fusion protein. Purified VrUBC1-His recombinant protein was shown to have ubiquitination activity in vitro. For the in vivo functional analysis of VrUBC1, VrUBC1 was expressed in yeast ubc4/5 double mutant. Stress tolerance was tested in the VrUBC1 overexpressing Arabidopsis transgenic plants. We propose that VrUBC1 play an important role in protein degradation processes during abiotic stress in plants.
289.
2012.07 서비스 종료(열람 제한)
The role of an expansin gene (IbEXP1) in the formation of the storage root (SR) was investigated by expression pattern analysis and characterization of IbEXP1-antisense sweetpotato (Ipomoea batatas cv.Yulmi) plants in an attempt to elucidate the molecular mechanism underlying SR development in sweetpotato. Transcript level of IbEXP1 was high in the fibrous root (FR) and petiole at the FR stage, but decreased significantly at the young storage root (YSR) stage. IbEXP1-antisense plants cultured in vitro produced FRs which were both thicker and shorter than those of wild-type (WT) plants. Elongation growth of the epidermal cells was significantly reduced, and metaxylem and cambium cell proliferation was markedly enhanced in the FRs of IbEXP1-antisenseplants, resulting in an earlier thickening growth in these plants relative to WT plants. There was a marked reduction in the lignification of the central stele of the FRs of the IbEXP1-antisense plants, suggesting that the FRs of the mutant plants possessed a higher potential than those of WT plants to develop into SRs. IbEXP1-antisense plants cultured in soil produced a larger number of SRs and, consequently, total SR weight per IbEXP1-antisense plant was greater than that per WT plant. These results demonstrate that SR development was accelerated in IbEXP1-antisense plants and suggest that IbEXP1 plays a negative role in the formation of SR by suppressing the proliferation of metaxylem and cambium cells to inhibit the initial thickening growth of SRs.
290.
2012.07 서비스 종료(열람 제한)
Rice(Oryza sativa L.) feeds more than 50% of the world’s population and is one of the most important crops in the world. To evaluate the variation between different rice classfications, genetic diversity amoung a diverse set of rice collection including 59 breedlines, 23 landraces, 18 weedy rices and 35 introductions were analysed using 134 SSR markers located on the 12 chromosomes. In total, 1269 alleles were identified with an average of 9.47 per locus. Of the 1269 alleles, 460 (36.2%) were common, with a frequency of 0.05–0.5; 741 (58.4%) were rare (frequency < 0.05) and 68 (5.4%) were abundant (frequency > 0.5). A relatively high Polymophism information content (PIC) value was detected in landraces with smaller number of accessions than that of breedlines. Model-based structure analysis revealed the presence of six subpopulations, which was essentially consistent with the clustering based on genetic distance. One hundred and eight accessions (80.0%) showed a clear relation to each cluster based on their inferred ancestry value (>70%), while the remaining 27 accessions (15.4%) of which nine from landraces and fifteen from introductions were categorized as admixtures. Landrace and introductions distributed to almost all the six subpopulations whereas most of breedlines distributed to two distinct subpopulations. In conculusion, landraces in the present study showed critical importance in preservation of genetic diversity and rice breeding programs.
291.
2012.07 서비스 종료(열람 제한)
In this study we established the high throughput screening system of high functional soybean cultivars using PLS modeling from FT-IR spectral data of soybean(Glycine max L) seeds. Crude extract of 20% methanol from soybean seed powders (153 lines) were used for FT-IR spectroscopy. Total fatty acid, carotenoids, flavonoids and phenolic compounds contents from soybean seed powders were analyzed using UV-spectrum and GC analysis respectively. PCA analysis showed that 153 soybean lines formed a single clusters with a few outlier. PC score 1 and 2 represented 39.5, 16.4% of total variation, respectively. And than showed change patten from the middle to outside for PCA plot. We conducted PLS regression analysis between FT-IR spectral data and fatty acids data. Palmitic acid showed the highest regression coefficient (R=0.78). This result implied that the content of palmitic acid could be predicted from FT-IR spectral data from soybean seed powders with relatively high fidelity. PLS modeling of total carotenoids also showed regression coefficient of 0.69. Regression coefficient of total flavnoids and phenolic compounds were 0.44, 0.39, respectively. At present, we are trying to confirm the accuracy of PLS prediction modeling using targeted metabolite analysis (GC-MS, LC-MS) from predicted soybean lines. To increase the accuracy of PLS modeling, we also trying to standardization of spectroscopy and spectral data processing. Furthermore we are going to develop PLS modeling from GC-MS, LC-MS data. The PLS prediction modeling established in this study could be applied for high throughput screening of other leguminous plant.
292.
2012.07 서비스 종료(열람 제한)
We have isolated wound-inducible genes from soybean using suppression subtractive hybridization (SSH) method and were able to obtain the full-length clone of GmDjp1 gene encoding DnaJ-like protein. The full-length cDNA of GmDjp1 is 689 bp with an open reading frame (ORF) consisting of 163 amino acid (aa). Genomic southern blot confirmed that soybean genome has two copies of GmDjp1 gene. Northern blot analysis showed that the RNA expression of GmDjp1 gene is specifically induced by heat, NaCl, wounding and drought stresses. It was demonstrated that GmDjp1-GFP was targeted to the nucleus in tobacco cell. GmDjp1 overexpression plants showed more susceptible to salt and heat stress compared to WT. RNA expression level of Hsp18.2 and Hsp25.3-P was lower than that of WT during recovery after heat hock in plants. This indicates that GmDjp1 may play a negative regulator to stress responses in plants.
293.
2012.07 서비스 종료(열람 제한)
Fusarium head blight (FHB), caused by Fusarium graminearum is a major disease problem on wheat and barley in Korea and around the world. We screened for Type II resistance in the greenhouse using single floret inoculation and for Type I resistance in the field using spray inoculation. Sumai 3 was used the FHB resistant check. Three hundred and seventy lines were evaluated for resistance to spread of symptoms within spike (type II). The 2012 field screening with 300 wheat lines was located in Kimjae-si Joeonbuk Korea. All plots were inoculated twice. The first inoculation was applied at anthesis for wheat. The second inoculation was applied three days after the initial inoculation (dai) for each plot. The inoculum was F. graminearum (GZ3639) prepared at a concentration of 100,000 macroconidai/ml with Tween 20 added as a wetting agent. Mist-irrigation was applied from the first inoculation on May 7 till June 7 to facilitate FHB development. FHB severity was assessed visually 21 days after inoculation on 20 arbitrarily selected spikes per plot. FHB severity was determined as the percentage of symptomatic spikelets from the total of all spikelets observed in these 20 spikes. Based on the field test, we could observe four categories of FHB severity: resistant (R: 0-20%), moderately resistant (MR: 21-40%), moderately susceptible (MS: 41-60%), and susceptible (S: 61-100%). The results showed that forty four lines showed the resistant category on FHB severity between 2.7% and 19.8%. In addition, ten lines showed similar FHB severity compared to Sumai 3 (9.9%).
294.
2012.07 서비스 종료(열람 제한)
Ionizing radiation is known to cause chromosomal alterations such as inversions and deletions and affects gene expression within the plant genome. To monitor the genome-wide transcriptome changes by ionizing radiation, we used rice Affimetrix GeneChip microarray to identify genes that are up- or down regulated by gamma-ray (200 Gy, 60Co source), cosmic-ray and ion beam (40 Gy, 220 MeV carbon ion). The overall expression patterns between gamma-ray and ion beam were similar but cosmic-ray was regulated differently. Combined results from all 3 radiations identified 27 up-regulated genes and 188 down regulated genes. These results mean the induction of similar mechanism changes in treatments of gamma ray and ion beam. However the different expression in treatment of cosmic-ray might be due to the other environmental conditions. Among the commonly up- or down- regulated genes, we chose highly up- or down- regulated several genes and confirmed its regulation in response to ionizing radiation exposure by RT-PCR analysis. Moreover, we showed that specific co-expression networks of candidate radio marker genes by ARACNE algorithm. Our results present profiles of gene expression related to different ionizing radiation and marker gene to predict sensitivity to ionizing radiation, such as GS (glutelin subunit) and FBX322.
295.
2012.07 서비스 종료(열람 제한)
Salinity stress severely affects plant growth and development causing crop loss worldwide. Suaeda asparagoides is a salt-marsh euhalophyte widely distributed in southwestern foreshore of Korea. To isolate salt tolerance genes from S. asparagoides, we constructed a cDNA library from leaf tissues of S. asparagoides that was treated with 200 mM NaCl. A total of 1,056 clones were randomly selected for EST sequencing, and 932 of them produced readable sequence. By sequence analysis, we identified 538 unigenes and registered each in National Center for Biotechnology Information. The 80 salt stress related genes were selected to study their differential expression. Reverse Transcriptase-PCR and Northern blot analysis revealed that 23 genes were differentially expressed under the high salinity stress conditions in S. asparagoides. They are functionally diverse including transport, signal transduction, transcription factor, metabolism and stress associated protein, and unknown function. Among them dehydrin (SaDhn) and RNA binding protein (SaRBP1) were examined for their abiotic stress tolerance in yeast (Saccharomyces cerevisiae). Yeast overexpressing SaDhn and SaRBP1 showed enhanced tolerance to osmotic, freezing and heat shock stresses. This study provides the evidence that SaRBP1 and SaDhn from S.asparagoides exert abiotic stress tolerance in yeast. Information of salt stress related genes from S. asparagoides will contribute for the accumulating genetic resources to improve osmotic tolerance in plants.
296.
2012.07 서비스 종료(열람 제한)
Narrow genetic diversity of Korean commercial rice lines have been a major limit factor in breeding new breeding lines having resistance and tolerance against biotic and abiotic stresses. Introducing novel favorable allele types could be possible through crossing with wild relatives, it demands additional tedious efforts to restore the unique genetic background of the recurrent parents, which determine commercial value in the market. Our study is preliminary based on the mutation breeding, by which agronomic traits could be acquired with the least impact on the unique haplotype of the wild type. Through screening and evaluating more than 7,000 mutant lines of Namil, a high yielding Korean japonica cultivar, several dozens of mutant lines expressing improved performances in terms of resistance or tolerance against biotic or abiotic stresses. One Sodium azide treated mutant line, Namil(SA)M2-1063-11-1-1-1-1-1-1, designated as ‘Namil(SA)-bl5’ performed high level of resistance against rice blast as well as reduced culm length. Two mapping populations, to dissect genetic basis of the blast resistance and short culm length, were constructed by using F2 progenies derives crosses between Namil(SA)-bl5 and Milyang23 and Namil(wild type) and Milyang23. Each progenies were evaluated in terms of DNA marker genotype as well as basal agronomic traits including blast resistance by using F2:3 seeds. Association analysis between marker genotype and evaluated phenotype of progeny lines were adopted to localize the putative chromosomal locations involved to culm length and blast resistance. The putative locations unique to Namil(SA)-bl5 were then elucidated through the comparisons with those of Namil x Milyang23 reference population. Tentatively, the genetic factors for reduced culm length and blast resistance were identified on chromosome 7 and chromosome 12, respectively.
297.
2012.07 서비스 종료(열람 제한)
In order to clarify the chromosomal location of quantitative trait loci (QTL) associated with the yield and agronomic traits in waxy corn and sweet corn (Zea maysL.), we were conducted identifying of QTLs associated with yield and agronomic traits by employing genetic linkage map of F2:3 population. A total of 14 QTLs each for days to silking (DTS), plant height (PH), ear height (EH), ear height ratio (ER), ear length (L-Ear) and kernel setting length (L-Sear) were detected in the 158 F2 families. The number of QTL per each trait was ranged from 1 to 6, and also phenotypic variance was ranged from 3.55 to 16.86%. For DTS, one QTLs was found to be controlled by genomic regions at locations chromosomes 1 contributing 9.21% of phenotypic variance. While three QTLs for PH, were found to be controlled by 3 genomic regions at locations chromosomes 1 and 2 contributing 6.68, 6.85 and 8.17% of phenotypic variance, respectively. For EH, six QTLs were found to be controlled by 6 genomic regions at locations chromosomes 1, 7, 8 and 10 range from 3.55 to 11.44% of phenotypic variance. The one QTLs for ER was found at locations chromosomes 1 contributing 7.25% of phenotypic variance. For L-Ear, two QTLs were found to be controlled by 2 genomic regions at location chromosome 7 and 10 contributing 7.40 and 11.63% of phenotypic variance, respetively. The one QTLs for L-Sear was found at locations chromosomes 3 contributing 16.86% of phenotypic variance. Among them, three QTLs, such as qEH8 (11.44%), qLEar10 (11.63%), and qLSear3 (16.86%) may be considered as a major QTLs, while the remaining 11 QTLs might be regarded as minor QTLs. This study may provide valuable information for the further identification and characterization of genes responsible for agronomic traits in waxy corn and sweet corn.
298.
2012.07 서비스 종료(열람 제한)
In this study, we were conducted the construction of the framework map using SSR markers in the F2 population derived from a cross between waxy corn inbred line (02S6140) and sweet corn inbred line (KSS22), and also identifying of QTLs associated with eating quality traits by employing genetic linkage map of F2:3 population. The linkage map was constructed using 295 SSR markers on the 158 F2 individuals derived from a cross of 02S6140 and KSS22. The map comprised a total genomic length of 2,626.5cM in ten linkage groups and an average distance between markers of 8.9cM. Chi-square test revealed that 254 markers (86.1%) associating with all ten chromosomes exhibited a segregation of 1:2:1 Mendelian ratio. A total of 10 QTLs each for pericarp thickness (PER), amylose content (AMY), dextrose content (DEX), and sucrose content (SUC) were detected in the 158 F2 families. The number of QTL per each trait was ranged from 2 to 4, and also phenotypic variance was ranged from 4.26 to 30.71%. For PER, 4 QTLs were found to be controlled by four genomic regions at locations chromosomes 4, 5, 8, and 9 contributing 10.43, 6.71, 6.74, and 7.79% of phenotypic variance, respectively. While 2 QTLs for AMY, DEX, SUC traits, were found to be controlled by two genomic regions at locations chromosomes 4, 6, 8, and 9 contributing between 4.26 and 30.71% of phenotypic variance, respectively. Among them, 4 QTLs, such as qAMY4 (10.43%), qAMY9 (19.33%), qDEX4 (21.31%), and qSUC4 (30.71%), may be considered as a major QTLs, while the remaining six QTLs might be regarded as minor QTLs. In our study, qAMY9 for amylase content was detected on chromosome 9 in marker intervals phi027-umc1634, which was the same locus as encoding wx1 gene. Thus qAMY9 may be thought very useful molecular marker for selecting amylase content trait. The other QTLs may be thought very useful molecular marker for eating quality traits. The resulting genetic map will be useful in dissection of quantitative traits and the identification of superior QTLs from the waxy hybrid corn, and also this study may provide valuable information for the further identification and characterization of genes responsible for eating quality-related traits in waxy corn and sweet corn.
299.
2012.07 서비스 종료(열람 제한)
Heat shock transcription factors (HSFs) are the major heat shock factors regulating the heat stress response. They participate in regulating the expression of heat shock proteins (HSPs), which are critical in the protection against stress damage and many other important biological processes. In this study, a genome-wide analysis was carried out to identify all HSFs soybean genes. Twenty six nonredundant HSF genes (GmHsf) were identified in the latest soybean genome sequence. Chromosomal location, protein domain and motif organization of GmHsfs were analyzed in soybean genome. The phylogenetic relationships, gene duplications and expression profiles of GmHsf genes were also presented in this study. According to their structural features, the predicted members were divided into the previously defined classes A–C, as described in Arabidopsis. Using RT-PCR, the expression patterns of 26 GmHsf genes were investigated under heat stress. The data revealed that these genes presented different expression levels in response to heat stress conditions. Real-time (q)RT-PCR was performed to investigate transcript levels of five GmHsfs in response to multiple abiotic stresses. Differential expression of five GmHsfs implies their role during abiotic stresses. Subcellular localization using GFP-fusion protein demonstrated that GmHsf12 and GmHsf34 were restricted to the nucleus and GmHsf28 was localized in the nucleus and cytoplasm in plant. The results provide a fundamental clue for understanding of the complexity of the soybean HSF gene family and cloning specific function genes in further studies and applications.
300.
2012.07 서비스 종료(열람 제한)
Abiotic stresses such as extreme temperatures frequently limit the plant growth and productivity of major crop species. Two Chinese cabbage DH lines that have different geographic origins, in that Chiifu is from temperate regions, while Kenshin is from subtropical and tropical regions have been expected to show the specific response to high or low temperature. To find the temperature response genes between Chiifu and Kenshin, we analyzed transcriptomic profiling from light-chilling (6h at 4°C) and high temperature (6h at 38°C) treated plants using the KBGP-24K chip. Distribution of genes classified by PI (probe intensity) values showed remarkable difference between Chiifu and Kenshin. The number of genes up- and down-regulated gens by both temperatures were 135 and 79 genes, respectively. These genes may be temperature stress-related genes. Genes involved in the response to stress were changed by light-chilling stress. Chiifu specifically up-regulated genes upon light chilling-stress belong to cold acclimation proteins, calcium binding proteins, cell wall biogenesis proteins and lipoxygenase. On the other hand, Kenshin specifically up-regulated genes by heat-shock treatment include heat-shock proteins, phosphatases, protein folding and phosphorylation-associated ones. Further study on these specific genes function may provide insight to adaptation of Chinese cabbage and clue to develop molecular markers.