검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 40,385

        981.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A novel, ultra-high sensitivity electrochemical aptamer biosensor (EAB) was fabricated by immobilising gold nanoparticles (Au) on a nano-confined interface of N-doped carbon nanofibers/carbon fibers (N-CNFs/CFs). Gold nanoparticle-thiol (Au–S) conjugates, coupled with aptamer-specific recognition technology, were used to immobilise aflatoxin B1 (AFB1). The nanoconfined interface of N-CNFs/CFs provides more binding sites for Au with its unique spatial structure and electroactive surface area, enhancing the electrochemical performance of the matrix. Compared to the existing sensor detection limit, the limit of detection(LOD) of the EAB was approximately 6.4 pg/mL. The dynamic detection ranged from 10.0 to 1.0 × 108 pg/ mL. Furthermore, AFB1 was also successfully detected in Chinese Materia Medica decoction pieces(CMMDP) using the prepared EAB, with recoveries ranging from 96.18 to 112.87%. These results demonstrate the proposed EAB’s potential as a reliable tool for rapid and efficient detection of AFB1 in complex matrices.
        4,300원
        982.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study details the synthesis and characterization of phosphorus-sulfur co-doped graphitic carbon nitride quantum dots (PSQ) and their integration into g-C3N4 (CN) to form PSQ/CN composites for the enhanced photocatalytic reduction of Cr(VI) and fluorescence detection. Incorporating PSQ into CN was found to significantly improve light absorption, narrow the band gap, and enhance charge separation efficiency. Notably, the composite material exhibits superior photocatalytic performance, especially in acidic environments. Photocatalytic assessments utilizing Cr(VI) demonstrated that the PSQ/ CN composite outperformed both undoped and singly doped materials, indicating its superior photocatalytic activity. Additionally, phosphorus-sulfur co-doping markedly increased the fluorescence quantum yield of PSQ. The fluorescence intensity exhibited a linear decrease with increasing Cr(VI) concentrations, enabling sensitive and selective detection of Cr(VI) with a detection limit as low as 1.69 μmol/L. Collectively, the PSQ/CN composite and PSQ highlight their potential for photocatalysis and fluorescence-based detection of Cr(VI), providing high sensitivity, selectivity, and synergistic interactions within the composite material.
        4,800원
        983.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study presents a framework for the sustainable carbon-based nanomaterials, focusing on Carbon Nano Tubes (CNTs). The framework integrates performance, hazard, and economic considerations toward the development of CNT-enabled products. Through Life Cycle Analysis (LCA) and environmental degradation studies, the research highlights the energy-intensive nature of CNT production, the persistence of CNTs in the environment, and the associated ecotoxicity risks. Functionalization of CNTs is emphasized as a crucial strategy to enhance biodegradability and reduce toxicity. The study also addresses the economic trade-offs, noting that while CNTs offer superior functional performance, their high production costs and energy demands must be carefully managed. The proposed framework aims to ensure that CNTs maximize their benefits while minimizing their environmental and health impacts, thereby supporting the sustainable advancement of carbon nanomaterials in various applications. The study found that CNT production is highly energy-intensive, but scaling up can improve efficiency. CNTs persist in the environment, with partial degradation, indicating potential long-term ecological risks. Functionalization enhances biodegradability and reduces toxicity, helping to balance performance with sustainability.
        4,600원
        984.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Self-assembled organic layers containing various functional groups between graphene layers were examined as gas barrier films. The formation of well-defined self-assembled layers of functionalized alkane molecules on graphene was confirmed by scanning tunneling microscopy (STM). The roles of these organic layers as gas barrier films could be quantitatively deduced by comparing their water vapor transmission rate (WVTR). The formation of self-assembled layers dramatically improved gas barrier properties by primarily blocking defects and gas molecule pathways. For functionalized alkanes containing hydrophilic groups, more enhanced gas barrier properties were observed compared to those with hydrophobic groups. These results clearly indicate that the primary role of the organic layers in gas barrier films is to block defects and the pathways of water molecules, with a secondary role of delaying the movement of water molecules through hydrogen bonding interactions.
        4,200원
        985.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Waste utilization is not only a way to protect the environment and realize green chemistry, but also a means to create novel materials. In this study, based on waste grape seeds as the biowaste-derived carbon dots (G-BCDs), a straightforward one-pot green method was employed for the rapid detection of folic acid (FA). Owing to the internal filter effect and the static mixing quenching mechanism, the sensing principle of G-BCDs was effectively quenched by FA. The results showed fluorescence at an emission wavelength of 415 nm upon excitation at 330 nm with a quantum yield of 1.5%. Particularly, the FA sensing assay obtained a broad linear range of 2–220 μM and the limit of detection was 0.48 μM. In addition, the fluorescence probe was successfully utilized for detecting FA in tablets, blood, and urine samples, yielding desirable results, which indicated promising applications in the fields of biological and pharmaceutical analysis.
        4,000원
        986.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical treatment has a significant effect on the properties of carbon fibers (CFs). In this study, the effect of mild electric field action on the microstructure and properties of polyacrylonitrile (PAN)-based high-modulus CFs (HMCFs) and high-strength CFs (HSCFs) was investigated. Under the action of a mild electric field, CFs did not show obvious defects, but their microstructure, mechanical properties and electrical properties were affected. For HMCFs, the graphitization degree in both axial and radial directions of the fibers had a decreasing trend, the grain spacing increased, and the grain size and degree of orientation decreased, which led to a decrease in the tensile strength, tensile modulus and axial conductivity. However, for HSCFs, the pattern of change was exactly opposite to that of HMCFs. The results of this study can provide useful guidance for optimizing the production process and surface modification of CFs.
        5,100원
        987.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Manganese dioxide, functioning as a cathode material for aqueous zinc-ion batteries (AZIBs), demonstrates a variety of benefits, such as elevated theoretical specific capacity, outstanding electrochemical performance, environmental compatibility, ample resource availability, and facile modification. These advantages make MnO2 one of the cathode materials that have attracted much attention for AZIBs. Nevertheless, manganese dioxide cathode in practical applications suffers from structural instability during the cycling process because of sluggish electrochemical kinetics and volume expansion, which hinder their large-scale application. Doping and compositing with conducting frameworks is an effective strategy for improving structural stability. Herein, homogeneously in situ growth of Yttrium-doped MnO2 nanorods on conductive reduced graphene oxide (Y-MnO2/rGO), were synthesized through a straightforward hydrothermal method. The Y-MnO2/rGO electrodes have an ultra-long cycle life of 179.2 mA h g− 1 after 2000 cycles at 1 A g− 1 without degradation. The excellent structural stability is attributed to the cooperative effect of yttrium doping and compositing with rGO, which is an effective approach to enhance the stability and mitigate the Jahn–Teller distortion associated with Mn ions.
        4,000원
        988.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we developed electrochemical sensors based on the composite of hydroxylated multiwalled carbon nanotubes (MWCNT-OH) and graphene for paraoxon-ethyl detection as pesticide residues in agricultural products. Chemical treatment was employed to produce MWCNT-OH from pristine MWCNT and its composite with graphene was subsequently characterized using FTIR, Raman spectroscopy, FESEM-EDX, TEM, and XPS techniques. The MWCNT-OH/graphene composite was employed as an electrode modifier on the glassy carbon electrode (GCE) surface, and its electroanalytical performances were studied using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. It was revealed the optimum composition ratio between MWCNT-OH and graphene was 2:8, for paraoxon-ethyl detection at pH 7. This could be attributed to the enhanced electrocatalytic activity in the MWCNT-OH/graphene composite which displayed a linear range of paraoxon-ethyl concentration as 0.1–100 μM with a lower detection limit of 10 nM and a good sensitivity of 1.60 μA μM cm− 2. In addition, the proposed sensor shows good reproducibility, stability, and selectivity in the presence of 10 different interfering compounds including other pesticides. Ultimately, this proposed sensor was tested to determine the paraoxon-ethyl concentrations in green apples and cabbage as samples of agricultural products. The obtained concentrations of paraoxon-ethyl from this proposed sensor show no significant difference with standard spectrophotometric techniques suggesting this sensing platform might be further developed as a rapid detection of pesticide residue in agricultural products.
        5,500원
        989.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To optimize the electrochemical properties of Ni-rich cathode materials, CPAN@SC-NCM811 is prepared via surface modification of single-crystalline LiNi0.8Co0.1Mn0.1O2 cathode material by adding 1, 2 and 3 wt.% of polyacrylonitrile, respectively. Significantly, the results obtained from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) verify the successful synthesis of CPAN@SC-NCM811 cathode, which exhibits better electrochemical properties compared to SC-NMC811. After thorough milling and calcination of 2 wt.% polyacrylonitrile with SC-NCM811, the initial discharge specific capacity of prepared S2 sample is 197.7 mAh g− 1 and the capacity retention reached 89.2% after 100 cycles at a rate of 1.0 C. Furthermore, the S2 sample exhibits superior rate performance compared to the other three samples, in which these superior electrochemical properties are largely attributed to the optimal ratio of conductive cyclized polyacrylonitrile coatings. Overall, this work offers guidelines for modifying the surface of SC-NCM811 cathode materials for lithium-ion batteries with exceptional cycling and rate performance.
        4,000원
        990.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotube (CNT) fibers were synthesized in this study under a hydrogen atmosphere using the floating-catalyst chemical vapor deposition (CVD) technique. Acetone, ferrocene, and thiophene served as the sources of carbon, catalyst, and promoter, respectively. By adjusting the amount of thiophene, the sulfur molar ratio in the CVD reactor was varied to study its impact on the morphology and composition of the CNT fibers. Raman and TEM analyses showed that the structural properties of the CNTs, especially the production of single-walled CNTs (SWCNTs) with a high Raman IG/ ID ratio of approximately 23.8, can be finely tuned by altering the sulfur content, which also affects the accumulation of spherical carbonaceous particles. Moreover, it was established that the electrical conductivity of the CNT fibers is significantly influenced by their specific components—SWCNTs, multi-walled CNTs (MWCNTs), and spherical carbonaceous particles. The ratios of these components can be adjusted by modifying the molar ratios of catalyst and promoter in the precursor mixture. Remarkably, SWCNTs with enhanced crystallinity were found to substantially improve the electrical conductivity of the CNT fibers, despite the presence of numerous spherical carbon impurities.
        4,500원
        991.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polyethylene (PE) is one of the most widely used plastics, and vast amounts of waste PE are either buried or incinerated, leading to environmental concerns. Significant research efforts have focused on converting waste PE into carbon materials, particularly as carbon anodes for lithium-ion batteries (LIBs). However, most previously developed PE-based carbon anodes have underperformed compared to graphite-based commercial anode materials (CAM). In this study, LIB anode materials were prepared based on both commercial high-density polyethylene (CPE) and waste high-density polyethylene (WPE). Through thermal oxidative stabilization and high-temperature graphitization, both CPE and WPE were successfully transformed into highly crystalline carbon materials comparable to CAM. However, despite the high crystallinity, both CPE and WPE derived carbon contained significant number of fine particles and exhibited a broad particle size distribution. When used as an anode for LIBs, fine particles led to unwanted side reactions, resulting in an initial coulombic efficiency (ICE) of around 85%, which is lower than the ICE value of 92.5% observed in CAM. To tackle the low ICE problem, recarbonization after coal tar (CT) coating was adopted as a mean to induce secondary particle formation. After CT coating, the average particle size increased, and the size distribution became narrower. Although CT coating reduced the crystallinity slightly, the overall level remained comparable to that of CAM. As a result, the CT-coated graphitized CPE (GCPE@10CT) and CT-coated graphitized WPE (GWPE@10CT) exhibited performance comparable to CAM as LIB anodes, achieving an ICE of over 93% and a capacity of approximately 349 mAh g− 1.
        4,300원
        992.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conductive polymeric composites (CPC) incorporating carbon nanotubes (CNT) and carbon fibers (CF) offer promising potential in self-heating applications due to their superior electrical and thermal properties. This study investigates the synergistic effects of CNT and CF on the electrical conductivity and heat-generation capabilities of CNT/polydimethylsiloxane (PDMS) nanocomposites. Three CF lengths (0.1 mm, 3 mm, and 6 mm) were systematically evaluated to establish hierarchical conductive networks. The incorporation of 6 mm CF into CNT/PDMS composites resulted in a 72% increase in electrical conductivity compared to composites with 0.1 mm CF. Despite these enhancements in electrical performance, the heat-generation capabilities, based on simulations and experimental validation, showed minimal dependence on CF length. A micromechanics-based numerical approach was used to compare and validate the experimental findings, identifying limitations in current analytical models, especially in predicting the heat-generation behavior.
        4,300원
        993.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Lightweight materials with favorable mechanical, electromagnetic interference (EMI) shielding and thermal insulation performance are highly desirable for applications in harsh environments. Polyacrylonitrile (PAN)-derived carbon nanofibers/ carbon foams containing hollow closed microspheres have been developed, and their balanced multifunction is noteworthy. The addition of CNFs resulted in a gradual enhancement of the specific compressive strength of carbon foams, reaching a maximum value of 26.6 MPa·cm3·g−1 with content of 3 wt.% CNFs, improved by as much as 62%, compared to that of pristine carbon foam. Additionally, the fracture toughness exhibited the maximum fracture energy absorption of 118.6 MJ‧m−3 at 3 wt.% CNFs. The appropriate amount of CNFs and hollow carbon microspheres resulted in effective toughening and strengthening of carbon foams. Incorporation of CNFs into carbon foams also resulted in an improvement in their electromagnetic shielding performance, with a maximum EMI-shielding effectiveness of 65.8 dB. Reflection loss was the main contributor to electromagnetic shielding efficiency. Furthermore, carbon foams presented remarkable high-temperature thermal insulation, with a minimum thermal conductivity of merely 0.509 W·m−1·K−1 at 800 °C. They exhibited the ability to withstand the butane flame ablation at 1000 °C, which substantiated the potential of carbon foams for aerospace applications.
        4,300원
        994.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Marine biomass (MB) offers an environmentally friendly and readily available carbon source from the ocean. However, the high concentration of alkali and alkaline earth metals (AAEMs) in MB typically reduces the carbon yield and inhibits micropore formation during heat treatment due to catalytic gasification. In this study, we successfully synthesized activated carbon (AC) with a high specific surface area (> 1,500 m2/ g) and significant mesopore content (60%, mean pore size: 3.4 nm) from MB by employing preheating, controlled acid purification, and CO₂ activation. The formation of mesopores in the MB-derived AC was driven by catalytic gasification induced by intrinsic and residual AAEMs during preheating and physical activation processes. We evaluated the potential of the MB-derived AC as an electrode material for electric doublelayer capacitors (EDLCs). The material demonstrated high specific capacitance values of 25.9 F/g and 29.4 F/g at 2.7 V and 3.3 V, respectively, during charge–discharge cycles. These high capacitance values at elevated voltages were attributed to the increased number of solvated ions (e.g., 1.93 mmol/g at 3.3 V) present in the mesopores. Fluorine-19 nuclear magnetic resonance (19F solid-state NMR) analysis revealed a substantial increase in solvated ion concentration within the mesopores of the MB-derived AC electrode at 3.3 V, demonstrating enhanced ion mobility and diffusion. These findings highlight the potential of MB-derived AC as a promising electrode material for high-voltage energy storage applications.
        4,500원
        995.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Efforts to mass-produce high-quality graphene sheets are crucial for advancing its practical and industrial applications across various fields. In this study, we present an innovative electrochemical exfoliation method designed to enhance graphene quality and increase yield. Our approach combines two key techniques: expanding the tightly packed graphite interlayer used as the electrode medium and precisely controlling voltage polarity. The dual-exfoliation technique optimizes the use of anions and cations of varying sizes in the electrolyte to facilitate meticulous intercalation, allowing ions to penetrate deeply and evenly into the graphite interlayer. The newly designed dual-exfoliation technique using biased switching polarity minimizes the generation of oxygen-containing radicals, while the incorporation of expanded graphite accelerates exfoliation speed and reduces oxidation, maintaining high graphene purity. With these improvements, we produced 1–3 layer graphene sheets with minimal defects ( ID/IG ≈ 0.13) and high purity (C/O ratio ≈ 20.51), achieving a yield 3.1 times larger than previously reported methods. The graphene sheets also demonstrated excellent electrochemical properties in a three-electrode system, with an electrical conductivity of 92.6 S cm− 1, a specific capacitance of 207.4 F g− 1, and a retention of 94.8% after 5,000 charge/discharge cycles, highlighting their superior stability and performance.
        4,900원
        996.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we reported a method for a fabrication of bead-on-string structured g-C3N4/CoFe2O4 composite nanofibers by electrospinning coupled with in situ calcination. For the first time, this catalyst effectively removed high concentrations of mixed organic pollutants through the synergistic effects of adsorption and photocatalysis. The composite materials removal efficiency of adsorption and photocatalytic for high concentrations of organic pollutants in wastewater can exceed 90%. Surface potential analysis using in situ Kelvin probe force microscopy demonstrated the electron transfer pathways on the catalyst surface. The formation of the heterojunction was demonstrated through DFT calculations to significantly enhance the efficiency of electron–hole separation. This work provided valuable insights for the development of efficient catalysts for the synergistic adsorption-photocatalytic treatment of environmental pollutants, thus addressing increasingly severe environmental challenges.
        5,100원
        997.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Quantum dot nanocomposite-based luminescent materials have gained attention for solid-state lighting and optical displays. This study presents a one-step, eco-friendly hydrothermal process to synthesize nitrogen, potassium, and calcium-doped carbon quantum dots (N, K, Ca-doped CQDs) from the flower extract of Mesembryanthemum crystallinum L. (ice plant). The CQDs were characterized using HRTEM, EDX, SAED, XPS, XRD, NMR, FTIR, zeta potential, UV–Vis, and photoluminescence spectroscopy. HRTEM revealed an average particle size of 4.6 nm, with a range of 2 to 7 nm. The CQDs exhibited a quantum yield of 20%, excellent water solubility, photostability, and greenish fluorescence under UV (365 nm). The fluorescence spectra were analyzed using CIE (Commission Internationale de l’Eclairage) chromaticity coordinates to determine the emitted color. The fluorescence emission behavior was influenced by solvent polarity, locally excited (LE) states, intramolecular charge transfer (ICT) processes, and hydrogen bonding. The hydrogen bonds between N, K, Ca-doped CQDs and DI water likely enhanced the stability of the ICT state, resulting in a red shift in fluorescence. Additionally, we developed an eco-friendly wheat-starch-based bioplastic nanocomposite by embedding the CQDs. The effects of CQD concentration and pH sensitivity on luminescent properties were explored. Finally, we demonstrated a practical application by designing a conceptual nameplate-like calligraphy using the optimized CQDs@bioplastic nanocomposite film (CQD concentration: 240 mg/mL, pH: 2.7), highlighting its potential for luminescent film applications.
        5,400원
        998.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using durian shell as a carbon source and triethanolamine as a nitrogen dopant, nitrogen-doped carbon dots (N-CDs) were prepared via the hydrothermal method. First, by exploring different reaction times, reaction temperatures, and carbon source/dopant ratios to synthesize nitrogen-doped carbon dots, it is concluded that the best process conditions are 200 ℃, reaction time being 15h, and the dopant addition amount being 2mL. Structure and characteristics of the synthesized CDs were analyzed using X-ray photoelectron spectroscopy, Fourier-transform infrared, fluorescence (FL), ultraviolet–visible absorption, and Raman spectra. The N-CDs showed blue FL with a quantum efficiency of 4.28%. The FL characteristics of the N-CDs were utilized for ion detection, which demonstrated that MnO− 4 and Cr 2 O2− 7 ions caused distinct FL quenching through static quenching, while other ions had no significant quenching effect. The detection limits for MnO− 4 and Cr 2 O2− 7 were 37.5 and 46.2 nM, respectively. The N-CDs were subsequently employed to detect these ions in actual water samples, producing satisfactory results. Therefore, the preparation of N-CDs using durian shell as raw material and its application in practical detection work have good application feedback, which not only provides a new way for the reuse of fruit and vegetable wastes but also provides a new detection means for environmental monitoring pollutants.
        4,500원
        999.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Incorporation of pseudocapacitive materials into porous carbon is a promising strategy to boost electrochemical performance. Herein, composite of biomass-derived porous carbon and MnO2 (a typical pseudocapacitive material) was facilely fabricated through an in-situ synthesis approach with sorghum seeds derived porous carbon (SSC) as the skeleton for MnO2 deposition. The as-prepared composite ( MnO2@SSC) exhibits hierarchical porous structure with abundant interlaced MnO2 nanowires wrapping on the surface. While the porous structure is beneficial to the active sites exposure and electrolyte ions transport, the interlaced three-dimensional (3D) network of MnO2 nanowires significantly boosts the tolerance toward volume shrinkage/expansion during the cyclic process. Consequently, the MnO2@ SSC-based electrode delivered quite promising supercapacitive performance including superior specific capacitance of 482.7 F/g at 0.5 A/g, outstanding long-term cycling stability (95.8% specific capacitance retention after 20,000 cycles) and high energy density of 13.7 Wh/kg at power density of 298.1 W/kg. Furthermore, all-solid-state flexible supercapacitor based on MnO2@ SSC can be facilely bent to various angles (0° to 150°) without significant degradation in the capacitive performance. This study provides a facile, cost-effective, and sustainable approach for the fabrication of high-performance electrode materials.
        4,500원
        1000.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study introduces a novel method for synthesizing carbon nanotube (CNT) fibers using floating catalyst chemical vapor deposition (FC-CVD) in an open-atmosphere without the need for hydrogen as a carrier gas. Traditional FC-CVD techniques depend on hydrogen gas and require a harvest box with inert gas purging, which restricts scalability. Our approach utilizes nitrogen gas as the sole carrier, allowing for CNT fiber production without a harvest box. To understand the spinning process mechanism in an open-atmosphere, we conducted thermodynamic and computational fluid dynamics (CFD) analyses. Methanol was selected as the carbon source based on thermodynamic calculations, which revealed that at high temperatures, methanol forms CO and H2 as thermodynamically stable species instead of carbon (C), thereby preventing soot formation. Moreover, methanol undergoes catalytic cracking exclusively in the presence of catalysts, further preventing soot formation. This approach allows operation at high partial pressure, even above the upper explosive limit (UEL), effectively preventing combustion. A 600 mm cooling zone was incorporated into the reactor to lower the outlet gas temperature below methanol's auto-ignition point, mitigating combustion risks. CFD calculations were employed to determine the necessary cooling zone length. Additionally, we developed a predictive model using the XGBoost machine learning method to efficiently map the parameter space for CNT fiber spinning, achieving an accuracy of 95.24%. The resulting CNT fibers demonstrate high electrical conductivity (240 ± 24 S/cm) and a low ID/ IG ratio, indicating a high degree of crystallinity.
        4,600원