A new cultivar ofDianthus caryophyIIus "Gamet" was selected from the progenies ofa cross "Master" and "97007-2"in 1998 at the National Horticultural Research Institute, Rural Development Administration. It was fmally selected in 2001 afterthe investigatio
A new cultivar ofDianthus caryophyUus "Pavo" was selected from the progenies ofa cross "Sarangbyul" and "TargetWhite" in 1997 at the National Horticultural Research Institute, Rural Development Administration. It was finally selected m 2001after the inves
Photoperiod sensitive genetic male sterile (PGMS) rice 920S was characterized as sterile when it was grown under longday condition but fertile when grown under short day condition. PGMS rice 920S, Fl and F2 plants were examined for their fer-tilities unde
This study was conducted to determine feasibility of utilization of Angelica acutiloba. Especially, the quality characteristics of bread prepared with the addition of Angelica acutiloba powder were investigated. Sensory evaluation and spoilage test were conducted for preparation of functional breads which added with ground plant matters (leaves and stems) from Angelica acutiloba. The result showed that the functional breads had high score of overall liking as well as low spoilage rate when added with 0.5 to 1.0% ground plant matters of Angelica acutiloba. Consumer acceptability evaluation showed a significant preference when added 0.5 to 1.0% ground leaves and stems of Angelica acutiloba into breads. Functional breads which added powder of Angelica acutiloba inhibited the growth of fungi. The more addition of Angelica acutiloba powder, the higher the degrees of this inhibited. These results suggested that the shelf-lives of the breads were extended by the addition of Angelica acutiloba powder. Further studies were required for improvement of functionality and diversity of bread products using medicinal plant materials as an additive.
Persicaria thunbergii has been utilized for the treatment of cancer as a folk medicine. We examined the effect of isorhamnetin, a flavonoid isolated from Persicaria thunbergii, on angiogenesis in vitro and in vivo. Basic fibroblast growth factor (bFGF) is a potent angiogenic factor found in various tumors. In this study, we found that the isorhamnetin decreased bFGF-induced human umbilical vein endothelial cells (HUVECs) proliferation and migration in a concentration-dependent manner (5, 10 and 20 μM) whereas, it did not inhibit bFGF-induced capillary-like formation of HUVECs. The chicken chorioallantoic membrane assay revealed that addition of isorhamnetin (10, 20 and 40 μM) displayed an antiangiogenic effect in vivo. These results suggest that the isorhamnetin inhibits the proliferation and migration of endothelial cells induced by bFGF, which may explain its anti-angiogenic properties.
Osmotic stress is one of major limiting factors in crop production. In particular, seasonal drought often causes the secondary disease in the field, resulting in severe reduction in both quality and productivity. Recent efforts have revealed that many genes encoding protein kinases play important roles in osmotic stress signal transduction pathways. Previously, the AtSIK (Arabidopsis thaliana Stress Inducible Kinase) mutants have shown to enhance tolerance to abiotic stresses, accompanying with higher expression of abiotic stress-related genes than did the wild-type plants. In this study, we have transformed potato (cv. Taedong Valley) with the AtSIK expression cassette. Both PCR and RT-PCR using AtSIK-specific primers showed stable integration and expression of the AtSIK gene in individual transgenic lines, respectively. Foliar application of herbicide (Basta®) at commercial application rate (0.3% (v/v)) revealed another evidence of stable gene introduction of T-DNA which includes the bar gene for herbicide resistance. Overexpression of the AtSIK gene under dual CaMV35S promoter increased sensitivity to salt stress (300 mM NaCl), which was demonstrated by the reduction rate of chlorophyll contents in leaves of transgenic potato lines. These results suggest that possible increase of osmotic tolerance in potato plants may be achieved by antisense expression of AtSIK gene.
A cytosolic ascorbate peroxidase, hydrogen peroxide-scavenging enzyme, was characterized from Codonopsis lanceolata. The cytosolic ascorbate peroxidase cDNA (CAPX) was 983 nucleotides long and possess an open reading frame of 753 bp with 251 amino acids (MW 27.9 kDa) with pI 5.61. The deduced amino acid sequence of CAPX shows high homology to other known cytosolic APXs (78~83%), but the CAPX was clustered independently from compared ten plant APXs. The CAPX gene was highly expressed in leaf and stem tissues, but not in root. When Codonopsis leaves cut using scalpel were soaked in 1 mM hydorgen peroxide, the expression of CAPX gene was suppressed.
In order to discern the possibility of functional food product or ingredient of a new medicine, the leaf parts and fruit parts of Prunus mume was partitioned with various solvents and their antioxidative activity was measured. When the antioxidative activity of MeOH extracts of leaf parts and fruit parts of Korea and China was compared, all of them showed the highest antioxidative activity in EtOAc fraction. In case of Korean Prunus mume leaf parts showed that quantity required for RC50 to be 27.04μg in EtOAc fraction and in case of China Prunus mume leaf parts, it was 23.31 μg which is similar to that of α-tocopherol (22.14 μg) and showed the highest activation. In case of Prunus mume fruit parts MeOH extract, Korean fruit showed 29.16 μg, and Chinese fruit showed 31.21 μg in EtOAc fraction and thus Korean fruit extract showed a higher activity of antioxidant than the Chines fruit extract. When the antioxidative activity between the fruit parts and leaf parts of Prunus mume was compared, the leaf parts showed a higher antioxidative activity.
A cinnamoyl CoA reductase (CCR) cDNA (ClCCR) was isolated from tabroot mRNAs of Codonopsis lanceolata by cDNA library construction, and its expression was investigated in relation to abiotic stresses. The ClCCR is 1008 bp in length with an open reading frame (ORF) of 336 amino acids. The deduced amino acid sequence was showed high similarity with cinnamoyl-CoA reductases of P. tremuloides (AAF43141) 87%, F.×aranassa (AAP46143) 83%, L. album (CAD29427) 80%, E. gunnii (CAA66063) 72%, S. tuberosum (AAN71761) 83%. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was revealed that the ClCCR expression was regulated by abiotic stresses.
A thoredoxin (CTRX) gene was cloned and characterized from a full length cDNA library prepared from taproot of three-year old Codonopsis lanceolata. A CTRX was 666 nucleotides long and has an open reading frame of 372 bp with 124 amino acid residues (pI = 4.92). The deduced amino acid sequence of the CTRX matched to the previously reported plant thioredoxin h genes. The deduced amino acid sequence of CTRX exhibited the similarity of 33-67% among previously registered thioredoxin genes. The expression of CTRX in leaves of Codonopsis lanceolata was increased by wounding and 1 mM H2O2, but decreased by 0.1 mM cadmium.
A class I type 2 metallothionein (CMet2) cDNA from taproot of Codonopsis lanceolata was isolated and characterized. A CMet2 cDNA was 572 nucleotides long and had an open reading frame of 234 bp with a deduced amino acid sequence of 78 residues (pI = 4.99). The deduced amino acid sequence of CMet2 matched to the previously reported type 2 metallothionein-like protein genes and showed 74% identity with that of G. max (BAD18377) and C. arietinum (CAA65009). Expression of CMet2 by the RT-PCR was increased at 1 hr after cadmium and hydrogen peroxide treatment, respectively.
Early predictions of crop yields call provide information to producers to take advantages of opportunities into market places, to assess national food security, and to provide early food shortage warning. The objectives of this study were to identify the most useful parameters for estimating yields and to compare two model selection methods for finding the 'best' model developed by multiple linear regression. This research was conducted in two 65ha corn/soybean rotation fields located in east central South Dakota. Data used to develop models were small temporal variability information (STVI: elevation, apparent electrical conductivity (ECa) , slope), large temporal variability information (LTVI : inorganic N, Olsen P, soil moisture), and remote sensing information (green, red, and NIR bands and normalized difference vegetation index (NDVI), green normalized difference vegetation index (GDVI)). Second order Akaike's Information Criterion (AICc) and Stepwise multiple regression were used to develop the best-fitting equations in each system (information groups). The models with δi~leq2 were selected and 22 and 37 models were selected at Moody and Brookings, respectively. Based on the results, the most useful variables to estimate corn yield were different in each field. Elevation and ECa were consistently the most useful variables in both fields and most of the systems. Model selection was different in each field. Different number of variables were selected in different fields. These results might be contributed to different landscapes and management histories of the study fields. The most common variables selected by AICc and Stepwise were different. In validation, Stepwise was slightly better than AICc at Moody and at Brookings AICc was slightly better than Stepwise. Results suggest that the Alec approach can be used to identify the most useful information and select the 'best' yield models for production fields.
본 연구에서는 사용후 TRISO 연료 처리를 위한 보다 효과적인 공정개발을 위하여 기존 전처리 기술에 대한 검토를 수행하였다. TRISO 연료 처리에 있어서 가장 중요한 사항은 연료입자에 포함되어 있는 탄소와 SiC성분을 효과적으로 분리하는데 있다. 공정개발 초기에 고려되었던 분쇄 후 배소공정의 경우 처리공정에서 발생되는 2차 폐기물로 인하여 분쇄 후 침출공정으로 대체 되었으나 여전히 해결해야 될 근본적인 문제점이 존재하고 있다. 따라서 본 논문에서는 TRISO 입자의 피복층 제거를 위한 새로운 개념의 열적 파쇄와 용융염 전해반응에 의한 피복층 제거 공정을 제안하였으며 각 공정에 대한 원리를 자세하게 기술하였다.
This study was conducted to investigate the effect of activated carbon on leaf and stem production of Agastache rugosa as affected by different amounts of activated carbon. The results obtained are summarized as follows. Growth characteristics including plant height and leaf length were the highest when activated carbon added with 10%, suggesting that optimum amount of activated carbon was ranged from 10 to 20%. Growth and enlargement of the root were improved by 10% AC. Activated carbon can be utilized as a soil conditioner in agricultural crop areas.
This study was conducted to determine feasibility of production system of Perilla frutescens leaf-stem by fertilizing of Sta-Green in pots. Germination rate of Perilla frutescens seeds collected in 2002 was 7%, also germination rate of seeds collected in 2003 was 62%, while germination rate of seeds collected in 2004 was above 93%. Seed germination rate of Perilla frutescens collected in 2004 were higher than seed gathering in 2002. Especially, plant growth and yield of Perilla frutescens grown in pot(The pots was filled with soil mixtures of Sta-Green and Peat Moss mixed with 40:60 ratio.) was the highest. These results indicate that leaf and stem production of Perilla frutescens can be improved by fertilizing of Sta-Green in pots.
A full-length cDNA (PPrx1) encoding peroxidase has been isolated and its nucleotide sequence determined from flower bud in ginseng plant (Panax ginseng). A PPrx1 cDNA is 1192 nucleotides long and has an open reading frame of 1062 bp with a deduced amino acid sequence of 354 residues (pI 7.53). The deduced amino acid sequence of PPrx1 matched to the previously reported peroxidase protein genes. The PPrx1 showed a high similarity with the 64% identity with peroxidase of N. tabacum (AAK52084). In the phylogenetic analysis based on the amino acid residues, the PPrx1 was closer with peroxidase of G. max (AAD37376).
Ribosomal protein complex with ribosomal RNA to form the subunits of the ribosome serve essential functions in protein synthesis. A full-length cDNA (PRPS4) encoding ribosomal protein S4 has been isolated and its nucleotide sequence determined in ginseng plant (Panax ginseng). A PRPS4 cDNA is 1105 nucleotides long and has an open reading frame of 792 bp with a deduced amino acid sequence of 264 residues (pI 10.67). The deduced amino acid sequence of PRPS4 matched to the previously reported ribosomal protein S4 genes. Their degree of amino acid identity ranged from 68 to 92%. Phylogenetic analysis based on the amino acid residues showed that the PRPS4 grouped with ribosomal protein S4 of S. tuberosum (CAA54095).