Introgression from genetically modified plants (GMPs) may be dependent on the genetic similarity to wild relative plants. In Korea, many wild plant species are botanically related to the cultivated plants that have a potential to be genetically transformed. The controversy for hazards of GMPs is continuing because the studies on gene flow or introgression are little. Based on the systematic criteria, we have surveyed Korean wild plant species that showed the similarity to cultivating crops. The consideration for feasibility of genetic pollution (introgression of transgene) is necessary for the successful accomplishment in the practical use of GMPs. Although the detrimental effects of GMPs on wild relatives have not been clearly verified, Korean wild plant species related to crop plant (potential GMP) have to be investigated with respect to the introgression. Korean flora consists of ca. 5,500 species. Among them, 1,448 species are classified as weed species (966 native, 325 naturalized, and 167 escaped ones), which is vulnerable to GMPs in term of introgression. We suggested the principal Korean wild plants related to major crops that might be affected by GMPs via introgression. The investigated species herein are selected based on the morphological and phenological relationship. It is necessary to verify the genetic relationship between cultivated plants and wild relatives sing more precise molecular techniques, which provide the information of likelihood for the introgression of transgene
The applicability of near infrared reflectance spectroscopy(NIRS) was tested to determine the protein and oil contents in ground soybean [Glycine max (L.) Merr.] seeds. A total of 189 soybean calibration samples and 103 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of protein, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing and 1 point second smoothing) math treatment condition with SNV-D (Standard Normal Variate and Detrend) scatter correction method and entire spectrum by using MPLS (Modified Partial Least Squares) regression. In the case of oil, the best equation was obtained at 1, 4, 4, 1 condition with SNV-D scatter correction method and near infrared (1100-2500nm) region by using MPLS regression. Validation of these NIRS equations showed very low bias (protein:-0.016%, oil : -0.011 %) and standard error of prediction (SEP, protein: 0.437%, oil: 0.377%) and very high coefficient of determination (R2 , protein: 0.985, oil : 0.965). Therefore, these NIRS equation seems reliable for determining the protein and oil content, and NIRS method could be used as a mass screening method of soybean seed
Soybean [Glycine max (L.) Merr.] seed weight is a important trait in cultivar development. Objective of this study was to identify and confirm quantitative trait loci (QTLs) for seed weight variation in the F2 and F2:3 generations. QTLs for seed weight were identified in F2 and F2:3 generations using interval mapping (MapMaker/QTL) and single-factor analysis of variance (ANOVA). In the F2 plant generation (i.e., F3 seed), three markers, OPL9a, OPM7a, and OPAC12 were significantly (P<0.01) associated with seed weight QTLs. In the F2:3 plant row generation (i.e., F4 seed), five markers, OPA9a, OPG19, OPL9b, OPP11, and Sat_085 were significantly (P<0.01) associated with seed weight QTLs. Two markers, OPL9a and OPL9b were significantly (P<0.05) associated with seed weight QTLs in both generations. Two QTLs on USDA soybean linkage group C1 and R were identified in both F2 and F2:3 generations using interval mapping. The linkage group C1 QTL explained 16% of the variation in seed weight in both generations, and the linkage group R QTL explained 39% and 41% of the variation for F2 and F2:3 generation, respectively. The linkage group C2 QTL identified in F2:3 generation explained 14.9% of variation. Linkage groups C1, C2 and R had previously been identified as harbouring seed size QTLs. The consistency of QTLs across generations and populations indicates that marker-assisted selection is possible in a soybean breeding program.
본 연구는 사춘기전과 사춘기가 시작될 무렵의 흰쥐난소에서 에탄올이 steroidogenic acute regulatory protein(StAR)의 유전자 발현에 어떠한 영향을 미치는지 조사하고자 수행되었다. 생후 25일 째부터 매일 흰쥐에 에탄을 또는 생리식염수를 복강주사하고 생후 27일, 32일 째에 실험동물을 희생시켜 혈액과 난소를 적출하였다. 실험결과 에탄올은 혈중의 황체호르몬 함량을 유의하게 감소시켰으며, 자궁의 무게는 27일 째에는 에탄올처리
This study was conducted for 2 years at Chinju region to establish suitable seeding rate and fertilizing levels of nitrogen, phosphorous and potassium in spring-sown Jinyangbori. Heading and maturing were delayed by increasing fertilizers, especially nitrogen. Number of spikes per were secured by much seeding and increased application of nitrogen. One thousand grain weight reduced with increasing fertilization at any seeding rate. Relatively high harvest indices were observed with 12-10-4 at 10kg. 10a-l seeds planted, followed by 6-10-8 at 15 kgㆍ 10a-1 , and 6-10-4kgㆍ 10a-l at 20kg ㆍ 10a-l of N-P-K fertilizing combinations, respectively. There was no distinct differences on yield for various seeding rates in spring-sown barley. When seeding rate increased up to 15kgㆍ10a-1 , the positive effect of fertilizers was recognized as the function of balanced-application. It was possible to recommend 10kgㆍ10a-1 as seeding rate and 6-5-4(N-P-K)kgㆍ10a-1 as fertilizing combination in spring-time seeding considering low input and sustainable agriculture. There was no significant difference of protein content in grain by seeding rate. Increase of nitrogen fertilizer enhanced protein content in grain
Molecular markers are useful to confirm the hybridity of F1 plant derived from cross of two homozygous parents with similar morphological traits. RAPD markers were used to test F1 hybrid plant obtained from cross of two homozygous soybean (Glycine max) parents. Fl plant for cross I was made from the mating of Hobbit87 (female) and L63-1889 (male) and Fl plant for cross II was obtained from the mating of H1053 (female) and L63-1889 (male). Selfing plant per each cross was also obtained. Among 20 Operon primers used, OPA04 and OPA09 show polymorphism between cross I and II parent. Band in size 1Kb of OPA04 and 2.1Kb of OPA09 primer was polymorphic band. This fragment identified Fl hybrid plant and selfing plant in cross I and II. Female parent Hobbit87 in cross I and H1053 in cross II has no this fragment (recessive allele). However, male parent L63-1889 and Fl hybrid plant in cross I and II has this size of polymorphic band (dominant allele). This indicated that Fl hybrid and selfing plants were detected by RAPD marker before phenotypic marker would be used to identify Fl hybridity. Amplification products of selfing plant for cross I and II were completely same to the those of female parent. When mature, flower color of Fl hybrid plant in cross I and II was purple and flower color of selfing plant in cross I and II was white. Purple flower is dominant trait. Fl hybridity was successfully detected at very early growth stage using RAPD marker. Therefore, RAPD marker can be used broadly to confirm Fl hybridity in many crops.
Soybean [Glycine max (L.) Merr.), mungbean [Vigna radiata (L.) Wilcz.], cowpea [V. unguiculata (L.) Walp.], adzuki bean [V. angularis (Willd.) Ohwi & Ohashi], maize [Zea mays L.], sorghum [Sorghum bicolor (L.) Moench], sorghum ~times sudangrass [So bicolor intraspecific hybrid], and Japanese millet [Echinochloa crusgalli var. frumentacea (Link) W.F. Wight] were grown at two planting dates (18 June and 15 July) at Cheju in 1997 to select the best forage legumes adapted to Cheju Island for grass-legume forage rotation. Averaged across planting dates and cultivars, dry matter (DM), crude protein (CP), and total digestible nutrient (TDN) yields were 5,646, 1,056, and 3,637 kg/ha for soybean, 4,458, 676, and 2,661 kg/ha for mungbean, 3,289, 553, and 2,055 kg/ha for cowpea, 3,931, 674, and 2,489 kg/ha for adzuki bean, 12,695, 969, and 7,642 kg/ha for maize, 17,071, 1,260, and 8,857 kg/ha for sorghum, 16,355, 1,163, and 8,543 kg/ha for sorghum ~times sudangrass hybrid, and 8,288, 929, and 4,091 kg/ha for Japanese millet. Soybean was higher in CP, ether extract (EE), and TON content but was lower in nitrogen free extract content compared with the three other legumes. The legumes had much higher CP (13.7 to 21.9%), EE (2.42 to 6.23%), and TDN (58.7 to 69.9%) content but lower in crude fiber (CF) content (17.3 to 25.3%) than did the grasses tested except maize which had relatively lower CF content but higher TDN content. These results suggest that soybean could be the best forage legume for grass-legume forage rotation in the Cheju region.
A cDNA Fragment encoding iron storage protrin generated by polymerase chain reaction(PCR) using highly conserved regions of ferritin related genes were used to sereen a red pepper cDNA library. cDNA clone was designated as Fp1. Fp1 clone contatines a 5' nontranslated region of 51dp containing stop conds. Down stream from 5' UTP. an open reading frame of 750bp was observed. followed by a 3' UTR of 272bp. The deduces amino acid sequence of red pepper protein(Fp1) showed 84%, 48% and 36% identity with soybean(SolC). human(HuL H) and horse spleen(HoS-L) ferritin mRNA accumulation in response to iron. Ferritin mRNA accumulation was transient and particularly abundant in leaves. reaching a maxmum at 12h. The level of ferritin mRNA in roots was affected to a lesser extent than in leaves.
Total iron content and ferritin distribution have been determined in red pepper(Capsicum annuum L.) during development stage under conditions of iron nutritional status from hydroponic culture. Color of the leaves become chlorotic on iron deficient and high concentration. The plant height on each iron concentration had retarding effect at concentration lower than 25μM and greater than 12525μM. In normal green leaves. Total iron content was almost constant with a mean value of 2.5μmole of iron/mg of dry matter, except at 63day, for which it increases slightly to 4μmole. Howere, iron content of chlorotic plants grew on iron free medium was not almost detectable. Also in post chlorotic leaves(++Fe), iron content was evidently increase unitl 7days after transfer on liquid medium, but decreased from after 14days. Also, ferritin protein analysed total protein extracts prepared from leaves of different ages using antibodies raised against ferritin protein. Ferritin protein deereased progressively during the first week of germination and was not detectable in vegetative tissues. Ferritin protein in post chlorotic leaves wasevidently strongly cnhanced until 11days after transfer on liquid medium but decreased until the leves became chlorotic.
This study was conducted to find out a desirable screening condition for the salinity tolerance in germination of rice. Seeds of 33 rice varieties were tested in NaCl solutions with various concentration levels. The germination percentage had a decreasing tendency with increasing NaCl concentration and inhibition concentration of 50% germination was 320mM. Standard deviation of germination percentage was highest (28.6) under 300mM NaCl. There was a highly significant correlation between the 50% germination concentration and the germination percentage at 20th day after seeding in 300mM NaCl. Also in 300mM NaCl, the germination percentage at 20th day after seeding was significantly correlated with the germination percentage at the 6th day after seeding. The salinity tolerance on the basis of germination percentage at 6th day after seeding in 300mM NaCl, was strong in 'Hyangnambyeo', 'Ilmibyeo', 'Kancheogbyeo', and 'Namwonbyeo', while weak in 'Ansanbyeo', 'Odaebyeo', 'Nonganbyeo', 'Dasanbyeo', and 'Namcheonbyeo'.
온도가 쌀보리와 맥주보리의 출엽속도와 출엽간격에 미치는 영향을 구명하고자 쌀보리 3품종(능쌀보리, 새쌀보리, 향천과 001)과 맥주보리 3품종(두산 8호, 사천006, 진광보리)을 향온 7수준(4, 8, 12, 16, 20, 24, 28℃ )과 변온 7수준[6/2(명기 / 암기), 10/6, 14/10, 18/14, 22/18, 26/22, 30/25℃ ]으로 유지시킨 생장상에서 4엽기까지 키우면서 매일 주간엽수를 조사하여 출엽속도 및 출엽간격를 산출한 결과를 요약하면 다음과 같다. 항온과 변온에 관계없이 공시품종 모두 동일 온도내에 있어서는 출아후 일수가 증가됨에 따라 주간 출엽수도 직선적으로 증가되었다. 평균기온 28℃ 를 제외하고는 출아속도와 출아간격이 항온과 변온간에 현저한 차이를 보이지 않았다. 출아속도와 출아간격은 품종간에 유의한 차이가 있었고 동일 품종내 온도간에도 현저한 차이가 있었다. 평균기온이 증가됨에 따라 일당 출아속도는 출아 최적온도까지 곡선적으로 증가된 다음 감소되었는데, 6품종의 출아 최적온도는 20.1~21.5℃ 로 품종간 현저한 차이는 없었으나 출아 최적온도에서의 출엽속도는 쌀보리가 0.202~0.226엽/일, 맥주보리가 0.231~0.241엽/일으로 맥주보리가 큰 경향이었다. 평균이온이 증가됨에 따라 유효적산온도당 출엽속도는 지수함수적으로 감소되었고, 출엽간격(일엽당 적사온도)은 지수함수적인 증가를 보였는데, 6품종의 평균 출엽간격은 4℃ 에서 46.2GDD/엽, 28℃ 에서 129.3GDD/엽이었다.ose와 fructose가 초기에는 많았으나 후에는 상당히 적어졌다. 줄기는 glu-cose가 많고 기타는 흔적 정도 였으며 뿌리는 초기에 sucrose가 종자에서 보다 높았으나 그 후 모든 당이 거의 흔적뿐이었다.과 GA3 반응성을 조사한 결과, 조합내 개체들간에 간장의 분리를 인정할 수 없었고, GA3 처리에 무반응성을 보였다. 따라서 Fukei 71의 단간유전자 d50은 GA3 무반응성과 밀접한 연관이 있는 것으로 생각되었다.에서 G1 기는 길어졌고 G2 기와 M기는 짧아졌다. 그러나 서광벼에서는 각 phase의 상대적 기간이 거의 일정한 비율이었다. 3. DNA, RNA 및 protein 합성은 온도가 하항함에 따라 증가하는 경향이었다.에 의해서는 최고분얼기나 유수분화기에 처리하면 수당 영화수가 감소하였으나 감수분열기에 처리하면 수당 영화수가 변하지 않았다.장기였고 건구의 수량감수가 심한 시기는 수잉기였다. 따라 미개약 영화가 많은 품종과 개화 수분이 모두 이루어지지만 불임이 되는 품종도 볼 수 있었다. 5. 냉해의 유묘 검정 결과에서 관찰조사와 처리에 의한 생육 억제 정도와는 반드시 일치하지 않았으나 종합적으로 볼 때 제 002, 팔금, 수성 등은 냉해에 강하고 수원 213-1, 재건, 팔달, Shirogane, 팔굉, 만경 등은 약하였다. 6. 감수분열기 및 출수기 처리 시의 일심율과 유묘 시의 냉해 정도 및 생육 억제 정도 등의 상호 관계를 살펴본 즉 대체로 유의적 상관을 보이지 않았다.련성을 보였는데, 특히 전체적인 비만도를 평가하는 체중, 체질량지수, 비만지수의 증가는 심혈관계질환의 예측지표로 볼 수 있는