검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,685

        1222.
        2022.10 구독 인증기관·개인회원 무료
        CYPRUS is a web-based waste disposal research comprehensive information management program developed by the Korea Atomic Energy Research Institute over three years from 2004. This program is stored as existing quality assurance documents and data, and the research results can be viewed at any time. In addition, it helps to perform all series of tasks related to the safety evaluation study of the repository in accordance with the quality assurance system. In the future, it is necessary to improve the user convenience by clarifying the relationship between FEP and scenarios and upgrading output functions such as visualization and automatic report generation. This purpose of this study is to research and develop the advanced program of CYPRUS. This study is based on building FEP, DIM and scenario databases. It is necessary to develop an algorithm to analyze and visualize the FEP, DIM and scenario relationship. This project is an integrated information processing platform for DB management and visualization considering user convenience. The first development goal is to build long-term evolutionary FEP, DIM, and scenarios as a database. The linkage by FEP item was designed in consideration of convenience by using a mixed delimiter of letters and numbers. This design provides information on detailed interactions and impacts between FEP items. Scenario data lists a series of events and characteristic change information for performance evaluation in chronological order. In addition, it includes information on FEP occurrence and mutual nutrition by period, and information on whether or not the repository performance is satisfied by item. The second development goal is to realize the relationship analysis and visualization function of FEP and scenario based on network analysis technique. Based on DIM, this function analyzes and visualizes interactions between FEPs in the same way as PID, RES, etc. In addition, this function analyzes FEP and DIM using network analysis technique and visualizes it as a diagram. The developed platform will be used to construct and visualize the FEP DB covering research results in various disposal research fields, to analyze and visualize the relationship between core FEP and scenarios, and finally to construct scenarios and calculation cases that are the evaluation target of the comprehensive performance evaluation model. In addition, it is expected to support the knowledge exchange of experts based on the FEP and scenario integrated information processing platform, and to utilize the platform itself as a part of the knowledge transfer system for knowledge preservation.
        1226.
        2022.10 구독 인증기관·개인회원 무료
        It is expected that around 576,000 bundles of CANDU spent nuclear fuels (SNF) will be generated from the four CANDU reactors located at the Wolsong site, according to the 2nd National Plan for the management of High-Level radioactive Waste (HLW). The CANDU SNFs are currently stored at the dry storage facilities at the Wolsong site. The authors proposed KRS+ geological disposal system consisting of two different concepts, Swedish KBS-3V type and Canadian NWMO type, for the final management of CANDU SNF. Both the concepts were designed based on the geological data obtained from the KURT (KAERI Underground Research Tunnel). The NWMO type is an in-room horizontal placement method. In this study, we try to determine the reference concept among the two proposed concepts at 500 meters below the ground surface. Assuming 10,000 tU of CANDU SNF and the KURT site, we design two engineered barrier systems, that is disposal canisters and buffers. The copper disposal canister is designed with a copper thickness of 10 mm based on a cold spray coating technique for both the disposal concepts. The domestic Ca-bentonite is used for the compact bentonite buffer with dry density of 1.6 g/cm3. Two concepts are compared in terms of safety, economics of the engineered barriers, and environment-friendliness. Because the same amounts of CANDU SNF are disposed of at the same depth, the differences in the disposal area are neglected. For the comparison in terms of safety, the corrosion lifetimes of the disposal canisters of two disposal systems are quantitatively calculated, and the capacities for retarding radionuclide releases of the compacted bentonite buffers are assessed. A computer tool developed by the authors is used in order to assess the lifetime of a disposal canister. In this study, the case that corrosion of a copper canister by sulfide from groundwater through intact buffer is analyzed. The sulfide concentration in groundwater is assumed to be 3 ppm. The most important safety function of buffer is to retard the radionuclide release. Twelve long-lived radionuclides are selected to compare the capacities for retarding the radionuclide transport through the buffer using an analytical solution. The retention time by an engineered barrier consisting of a disposal canister and a buffer is compared with twenty times the half-life of each radionuclide for both the disposal systems. The selected reference concept will be compared with the alternative geological concepts through a further study.
        1231.
        2022.10 구독 인증기관·개인회원 무료
        The structural integrity of concrete silos is important from the perspective of long-term operation of radioactive waste repository. Recently, the application of acoustic emission (AE) is considered as a promising technology for the systematic real-time health monitoring of concrete-like brittle material. In this study, the characteristics of AE wave propagation through concrete silo of Gyeongju radioactive waste repository were evaluated under the effects of groundwater and temperature for the quantitative damage assessment. The attenuation coefficients and absolute energies of AE waves were measured for the temperature cases of 15, 45, 75°C under dry and saturated concrete specimens, which were manufactured based on the concrete mix same as that of Gyeongju concrete silo. The geometric spreading and material loss were taken into account with regard to the wave attenuation coefficient. The attenuation coefficient shows a decreasing pattern with temperature rise for both dry and saturated specimens. The AE waves in saturated condition attenuate faster than those in dry condition. It is found that the effect of water content has a greater impact on the wave attenuation than the temperature. The results from this study will be used as valuable information for estimating the quantitative damage at the location micro-cracks are generated rather than the AE sensor location.
        1235.
        2022.10 구독 인증기관·개인회원 무료
        For safety assessment of a high-level radioactive waste disposal system, it is important to predict and analyze the coupled thermo-hydro-mechanical (THM) behaviors of bentonite, which is a buffer candidate material in the engineered barrier system. The Barcelona Basic Model (BBM) is a constitutive model to describe the geomechanical behaviors of partially saturated soils. Complicated tests are required to directly measure BBM parameters of bentonite. In this study, we demonstrate that probable BBM parameters can be sought by calibrating the BBM parameters to match simulation results to observed ones for two kinds of simple tests (swelling pressure test and free swelling test) instead of the complicated direct tests. In the swelling pressure test and free swelling test that were conducted by Japan Atomic Energy Agency (JAEA), water was injected into constrained and unconstrained bentonite core samples, and then swelling pressure and displacements were measured, respectively. We find optimal BBM parameters using a quasi-Newton optimization method that reproduce the observed swelling pressures and displacements in hydro-mechanical simulations. The optimal BBM parameters that are sought in the inversion process can be used to predict the THM behaviors of bentonite barriers in a high-level radioactive waste disposal system.
        1236.
        2022.10 구독 인증기관·개인회원 무료
        With the increase of temporarily-stored radioactive waste in Korea, the disposal of radioactive waste in a deep geological repository, which is located in crystalline rock at a depth of hundreds of meters below the ground level, has received great attention nowadays. To ensure the permanent isolation of radionuclides from the human and surrounding ecosystems, the safety assessment for the high-level radioactive waste disposal facilities is essential. For the reliable safety assessment of fractured rock, it is especially important to input proper hydraulic properties of fractures such as aperture and hydraulic conductivity, which can directly affect the fluid flow and radionuclide transport. Meanwhile, it has become important to consider sudden fault behavior caused by an earthquake with the recent occurrence of high-intensity earthquakes in the Korean Peninsula. The sudden fault behavior can induce the changes of the hydraulic properties of fractures. Since the changes of the hydraulic properties directly affects to the radionuclide transport in the fractured rock, it is important to estimate the effect of earthquake-induced stress change on hydraulic properties of fractures in the perspective of long-term safety assessment. In this study, the effect of an earthquake on the hydraulic properties of fractures was explored by a numerical approach. The static Coulomb stress change after the earthquake was calculated using software ‘Coulomb 3’ developed by United States Geological Survey (USGS) with the assumption for several mechanical properties such as Young’s modulus, Poisson’s ratio and effective coefficient of friction. The final stress after earthquake occurrence was calculated as the sum of the initial stress and the stress change. Thereafter, the normalized transmissivity of fracture after the earthquake was calculated using the final stress from the stress-transmissivity relationship. Using the methodology for calculating fracture transmissivity change induced by the earthquake developed in this study, the effect of several factors, such as the earthquake magnitude and the distance between fracture and epicenter, was additionally explored. The newly developed methodology will be applied to the processbased total system performance assessment framework (APro) being developed by KAERI, and this study is expected to be helpful for the safety assessment considering long-term evolution phenomena including earthquakes.