검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2023.10 구독 인증기관·개인회원 무료
        Although ethylformate and phosphine fumigants are widely used for pest quarantine, studies related to their mechanism of action and metabolic physiological changes in Drosophila models are still unclear. In this study, we investigated how key metabolites altered by fumigants and cold treatment are associated with and affect insect physiology by comparative metabolome analysis. Fumigant treatment significantly altered cytochrome P450 and glutathione metabolites involved in the detoxification mechanism and showed lower expression of PGF2α involved in the immune response compared to the control. Additionally, most of the metabolites functioned in metabolic pathways related to the biosynthesis of amino acids, nucleotides and cofactors.
        11.
        2017.04 구독 인증기관·개인회원 무료
        Recent studies suggested that gut symbionts modulate insect development and reproduction. However, how gut symbionts modulate host physiologies and what types of molecules are involved in these changes are still unclear. When we analyzed hemolymph proteins and transcriptional levels of host insects, hexamerin-α (Hex-α), hexamerin-β (Hex-β) and vitellogenin-1 (Vg-1) were highly expressed in symbiotic insects (Sym) compared to aposymbiotic insects (Apo). Depletion of Hex-β by RNA interference in 2nd Sym-nymphs delayed adult emergence, whereas Hex-α and Vg-1 RNA interference in 5th nymphs decreased reproduction of female insects and caused loss of color of laid eggs. Also, the levels of JHSBIII of Riptortus host were 3-fold higher in the Sym-female insects compared to the Apo-insects. These results demonstrate that the Burkholderia gut symbiont modulates host development and egg production through regulating the expression of three host storage proteins by controlling of brain hormone.