직물 표면을 문지를 때 느끼는 촉감은 여러 가지 기계적인 자극이 손 끝에 전달되어 느끼게 되므로, 직물의 표면의 특성을 분석하는 것은 매우 중요하다. 그러므로 표면을 덮고 있는 잔털의 양과 숫자를 측정하는 방법을 개발하고 촉감해석에 사용할 수 있도록 하였다. 표면의 거칠기는 비접촉으로 측정하여 잔털의 성질까지 포함된 스펙트럼을 얻었으며 FFT 분석을 통해 직물의 표면 구조의 특징과 상관되는 결과를 확인하였다. KES-F System에서 측정한 Hand Value와 비교 분석한 결과, 표면 거칠기와 잔털량과 잔털수는 객관적인 촉감해석에 중요한 요소로 사용할 수 있었다.
분리막 접촉기를 통한 이산화탄소의 흡수거동 예측을 위한 공정모사를 위해 시스템의 흡수제로 탄산칼륨 수용액을 선정하였고, 시스템에서의 이산화탄소와 관련된 가역반응을 고려하였으며, 사용된 반응속도상수, 평형상수, 용해도 그리고 확산계수는 탄산이온의 농도와 온도의 함수로 사용하였다. 또한 분리막 접촉기 공정모사를 위한 조작 조건으로 중공사막의 기공상태는 비젖음성 조건을 선택하였으며, 이러한 조작조건하에서 이산화탄소 분리거동을 다양한 공정변수 즉, 흡수제의 농도와 유속, 혼합기체의 압력변화에 대해 고찰하였다. 흡수제의 농도가 증가함에 따라 촉진수송에 의한 이산화탄소의 흡수거동을 확인할 수 있었고, 흡수제의 유속 증가에 따라 이산화탄소의 흡수속도가 점차 증가함을 확인할 수 있었으며, 분리막 접촉기에서 혼합기체의 압력변화가 흡수속도에 미치는 영향 및 흡수제의 재사용에 따른 흡수속도를 확인할 수 있었다. 이러한 공정모사를 통해 분리막 접촉기의 구성 및 조작에 필요한 각각의 인자들이 흡수속도에 미치는 영향과 예측, 이를 통한 적절한 조작조건의 도출 가능성을 확인할 수 있었다
내열금속인 W, Ti와 이들의 질화물인 W2N, TiN 박막을 이용하여 탄화규소 ohmic 접촉을 연구하였다. 열처리 온도에 따른 고온 안정성과 전기적 특성 및 상호 확산 억제 특성을 고찰함으로써 이들 질화물의 고온에서 안정한 ohmic 접촉으로 이용가능성을 조사하였다. 새로운 유기화합물 원료인 bis-trimethylsilylmethane을 이용하여 화학기상 증착법으로 증착한 단결정 β-SiC 박막과 W이 가장 낮은 접촉 비저항, 2.17×10(sup)-5Ωcm2를 보였으며, Ti 계열은 상대적으로 높은 접촉 비저항 값을 나타내었다. 이들 전극 위에 산화 방지막으로 Pt 박막을 증착함으로써 전극의 산화를 막을 수 있었으며, 질화물 전극은 고온에서 금속접촉에 비해 안정한 전기적 특성을 나타내었고, 상호 확산 방지 특성 면에도 우수한 특성을 지니고 있음을 알 수 있었다.
In order to introduce the touch to engineering and industries, it must be preceded to dstablish a quantitative barometer of the feeling. for this purpose, we developed a tactile measuring system to measure physical properties of texture, such as surface roughness, friction coefficient and compliance. The tactile measuring system uses a LASER type displacement sensor, which is a non-contacting system, in measuring the surface roughness. By considering that human tactile system is a contacting mechanism, this non-contacting method needs to be modified. As a precedent research of that, we compared the contacting and non-contacting method in this paper. Surface roughness of ten cloths were measured by using the measuring system, then compared to the test results using the Kawabata evaluation system(KES), which uses a contacting method in measuring the surface roughness.
손끝으로 물건을 문지르거나 잡아 질감을 느끼는 경우 나타나는 현상을 Hertzian 접촉이론을 응용하여 수학적인 모델링을 하였다. 물체표면에 손끝이 접촉하여 눌러지게되면 변형이 일어나게 되고 변형된 모양과 정도에 따라 촉감을 느끼게 된다. 손끝은 비선형으로 변형되므로 누르는 변위에 따라 탄성계수 값이 변하는 현상을 실험을 통하여 확인하였으며 모델링한 식과 비교한 결과 유사한 경향을 보였다. 특히 손끝이 직물을 누르며 문지를 때 힘이 크기변화를 측정하여 질감표현과의 관계를 분석하였다.