검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,808

        181.
        2023.05 구독 인증기관·개인회원 무료
        Domestic NPPs had produced the paraffin-solidifying concentrate waste (PSCW) for nearly 20 years. At that time radioactive waste management policy of KHNP was to reduce the volume and to store safely in site. The PSCW has been identified not to meet the leaching index after introducing the treatment system. PSCW has to be treated to meet current waste acceptance criteria (WAC) for permanent disposal. PSCW consists of dried concentrate 75% and paraffin 25% of volume. When PSCW is separated into a dried concentrate and a paraffin by solubility, total volume separated is increased twice. Final disposal volume of dried concentrate can reach to several times when solidifying by cement even considering exemption. Application of polymer solidification technology is difficult because dried concentrate is hard to make form to pellet. When PSCW is packaged in High Integrity Container (HIC), volume of PSCW is equal to the volume before package. The packaging process of HIC is simple and is no necessary of large equipment. It is important to recognize that HIC was developed to replace solidification of waste. HIC has as design goal a minimum lifetime of 300 years under disposal environment. The HIC is designed to maintain its structural integrity over this period, to consider the corrosive and chemical effects of both the waste contents and the disposal environment, to have sufficient mechanical strength to withstand loads on the container and to be capable of meeting the requirements for a Type A transport Package. The Final waste form is required for facilitating handling and providing protection of personnel in relation to solidification, explosive decomposition, toxic gases, hazardous material, etc. Structural stability of final waste form is required also. Structural stability of the waste can be provided by the waste itself, solidifying or placing in HIC. Final waste form ensure that the waste does not structurally degrade and affect overall stability of the disposal site. The HIC package contained PSCW was reviewed from several points of view such as physicochemical, radiological and structural safety according to domestic WAC. The result of reviewing shows that it has not found any violation of WCP established for silo type disposal facility in Gyeongju city.
        182.
        2023.05 구독 인증기관·개인회원 무료
        To prevent the release of radionuclides into the biosphere, disposal facilities for radioactive waste should be located to provide isolation from the accessible biosphere for tens of thousands to a million years after closure. During the period of interest, the constantly evolving natural environment and possible geological events of the site can cause disturbances to the containment function of the repository. Thus, for the long-term safety assessment of the repository, the possible long-term change of natural barrier should be considered. Due to the characteristics of radionuclides that transport mainly through the groundwater, understanding the long-term evolution of groundwater flow and geochemical properties is essential to assess the long-term changes in the natural barrier performance. The changes in characteristics of natural rocks and geological structures are one of the main factors that determine the hydrological and geochemical characteristics of the deep underground. In this study, we plan to develop a methodology to estimate these future geological evolutions in order to assess the possibility of hazardous events of the site that can affect hydrological or geochemical properties over the period of interest, and also in order to verify the change in the geological environment is within the safe performance range even after the period of interest. However, it is very unreliable to predict future changes in the natural environment because it is very heterogeneous, complex, and difficult to observe directly. For the preliminary study of the project, we reviewed cases of future evolution prediction researches with regard to the geological environment of disposal site and methods they applied to reduce the uncertainty of the prediction. The results will be used to establish basic data for future studies on the long-term evolution of hydraulic-mechanics performance of natural barrier and long-term evolution of geochemical performance around KURT site. In addition, it can contribute to construct long-term evolution scenario of the geological environment around future URL site.
        183.
        2023.05 구독 인증기관·개인회원 무료
        A radioactive waste repository consists of engineered barriers and natural barriers and must be safely managed after isolation. Geologic events in natural barriers should be categorized and evaluated according to their magnitude to assess the present and future stability of disposal. Among the longterm evolutionary elements of natural barriers, faults are a small portion of the Earth’s crust. Still, they play an important role in nuclide transport as conduits for fluids moving deep underground. In addition, the physical and chemical properties of fault rocks are useful for understanding the longterm and short-term behavior of faults. Paleomagnetic research has been used extensively and successfully for igneous, metamorphic, and sedimentary rocks. In addition, magnetic characterization of fault rocks can be used to describe faults or infer the timing of major geological events along fault zones. Components of magnetization defined in fault-breccias were attributed to chemical processes associated with hydrothermal mineralization that accompanied or post-dated tectonic activity along the fault. The study of magnetic minerals in fault rocks can be used as “strain indicators”, “geothermometers”, etc. This study is a preliminary test of magnetic properties using fault gouges. Fault gouges are not well preserved in typical terrestrial environments. Access to fresh gouges typically requires trenching through faults or sampling with a core drill. Fortunately, it is a magnetic property study using a fault gouge that exists on the inner wall of KURT (KAERI Underground Research Tunnel). This is to identify the motion history of the fault and, furthermore, to understand the stress structure at the time of fault creation. In addition, it can be presented as evidence for evaluating faults that may appear in future URL (Underground Research Laboratory).
        184.
        2023.05 구독 인증기관·개인회원 무료
        Chemical environments of near-field (Engineered barrier and surrounded host rock) can influence performance of a deep geological repository. The chemical environments of near-field change as time evolves eventually reaching a steady state. During the construction of a deep geological repository, O2 will be introduced to the deep geological repository. The O2 can cause corrosion of Cu canisters, and it is important predicting remaining O2 concentration in the near-field. The remaining O2 concentration in the near field can be governed by the following two reactions: oxidation of Cu(I) from oxidation of Cu and oxidation of pyrite in bentonite and backfill materials. These oxidation reactions (Cu(I) and pyrite oxidation) can influence the performance of the deep geological repository in two ways; the first way is consuming oxidizing agents (O2) and the second way is the changing pH in the near-field and ultimately influencing on the mass transport rate of radionuclides from spent nuclear fuel (failure of canisters) to out of the engineered barrier. Hence, it is very important to know the evolution of chemical environments of near-field by the oxidation of pyrite and Cu. However, the oxidation kinetics of pyrite and Cu are different in the order of 1E7 which means the overall kinetics cannot be fully considered in the deep geological repository. Therefore, it is important to develop a simplified Cu and pyrite oxidation kinetics model based on deep geological repository conditions. Herein, eight oxidation reactions for the chemical species Cu(I) were considered to extract a simplified kinetic equation. Also, a simplified kinetics equation was used for pyrite oxidation. For future analysis, simplified chemical reactions should be combined with a Multiphysics Cu corrosion model to predict the overall lifetime of Cu canisters.
        185.
        2023.05 구독 인증기관·개인회원 무료
        A methodology is under development to reconstruct and predict the long-term evolution of the natural barrier comprising the site of radioactive waste disposal. The natural barrier must protect the human zone from radionuclides for a long time. So for this, we need to be able to restore the evolution of the bedrock constituting the natural barrier from the past to the present and to predict from the present to the future. A methodology is being studied using surface outcrop, tunnel face of KURT (KAERI Underground Research Tunnel), and drill core at KAERI (Korea Atomic Energy Research Institute). Among them, drill core is an essential material for identifying deep geological properties, which could not be confirmed near the surface when considering the geological condition of the repository in the deep part. In this study, we selected several qualitative and quantitative analyses to construct a deep lithological model from the disposal perspective. These were applied to drill core samples around the KURT. There are the dikes presumed the Cretaceous were intruded by Jurassic granitoids in the study area. Analyzing trace elements of each rock type in the study area classified through geochemical characteristics and microstructure in previous studies made it possible to obtain qualitative information on the petrogenetic process. In addition, synthesizing the quantitative numerical age allows for grasping the evolution of bedrock, including intrusion and cutting relationships. LAICPMS was used for determining the age of zircons in plutonic rocks. The highly reliable 40Ar-39Ar method was selected for volcanic rocks because it can correct the loss of Ar gas and obtain the values of two types of Ar isotopes in a single sample. As a result, it was possible to infer the formation environment of rocks through anomalies in specific trace element content. And according to the numerical ages, it was possible to support the known separated rock type found in previous studies or to present a quantitative precedence relation for unclassified rocks. These methods could be applied to reconstruct the long-term evolution of bedrock within natural barriers.
        193.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Liquid metal extraction (LME), a pyrometallurgical recycling method, is popular owing to its negligible environmental impact. LME mainly targets rare-earth permanent magnets having several rare-earth elements. Mg is used as a solvent metal for LME because of its selective and eminent reactivity with rare-earth elements in magnets. Several studies concerning the formation of Dy-Fe intermetallic compounds and their effects on LME using Mg exist. However, methods for reducing these compounds are unavailable. Fe reacts more strongly with B than with Dy; B addition can be a reducing method for Dy-Fe intermetallic compounds owing to the formation of Fe2B, which takes Fe from Dy-Fe intermetallic compounds. The FeB alloy is an adequate additive for the decomposition of Fe2B. To accomplish the former process, Mg must convey B to a permanent magnet during the decomposition of the FeB alloy. Here, the effect of Mg on the transfer of B from FeB to permanent magnet is observed through microstructural and phase analyses. Through microstructural and phase analysis, it is confirmed that FeB is converted to Fe2B upon B transfer, owing to Mg. Finally, the transfer effect of Mg is confirmed, and the possibility of reducing Dy-Fe intermetallic compounds during LME is suggested.
        4,000원