검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 360

        261.
        2014.07 서비스 종료(열람 제한)
        The change of quality characteristics with storage temperature (room (25°C), low (15°C) and cold (4°C) temperature) and period of unhulled foxtail millet (Setaria italica Beauv. cv. Samdame and Gyeongkwan 1), proso millet (Panicum miliaceum L. cv. Hwanggeum-gijang and Manhongchal) and sorghum (Sorghum bicolor (L.) Moench cv. Hwanggeumchal and Donganme) were evaluated. The 1,000 grain weight, lightness, redness, yellowness and moisture content with storage temperature and period of unhulled foxtail millet, proso millet and sorghum were not showed difference. Germination percent and milling recovery of foxtail millet, proso millet and sorghum decreased with increasing storage temperature and period. Fat acidity of stored foxtail millet, proso millet and sorghum was increased with increasing storage period, and the higher temperature increased more. The results of this study show that the storage of foxtail millet, proso millet and sorghum at the low and cold temperature is better than the room temperature. Especially, in mind of the economics, the storage method is good low temperature than cold temperature.
        262.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        TCR subunits are members of membrane-bound receptors which allow the fast and efficient elimination of the specific fish pathogens have regulated function in adaptive immunity. Sequence structure of TCR subunits have been reported for various teleosts, but the information of each TCR subunit functional characterization through expression analysis in fish was unknown. In this study, we examined the gene expression of TCR subunits in the early developmental stages and observed transcript levels in various tissues from healthy adult olive flounder by RT-PCR. The mRNA expression of alpha subunit was already detected in the previous hatching step. But the transcripts of another TCR subunit were not observed during embryo development and increased after hatching and maintained until metamorphosis at the same level. It was found that all TCR subunits mRNAs are commonly expressed in the immune-related organ such as spleen, kidney and gill, also weak expressed in fin and eye. TCR alpha and beta subunit were expressed in brain, whereas gamma and delta were not expressed same tissue. The sequence alignment analysis shows that there are more than 80% sequence homology between TCR subunits. Because it has a high similarity of amino acid sequence to expect similar in function, but expression analysis show that will have may functional diversity due to different time and place of expression.
        263.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        The innate immune system is the only defense weapon that invertebrates have, and it is the fundamental defense mechanism for fish. The innate immune response is important in newly hatched flounders because it is closely involved in the initial feeding phase, which is why it is essential for survival during the juvenile period. The expression analysis of genes involved in the innate immune response in the olive flounder (Paralichthys olivaceus) in the days after hatching is incomplete. Therefore, we have begun to examine the expression patterns of genes specifically induced during the development of the innate immune system in newly hatched flounders. Microscopic observation showed that pronephron formation corresponded with the expression of perforin-encoding gene. These results suggest that perforin plays a vital role in the innate immunity of the kidney during developmental stages. Perforin expression was strong at the start of the development of the innate immune response, and continued throughout all the development stages. Our findings have important implications with respect to perforin’s biological role and the evolution of the first defense mechanisms in olive flounder. Further studies are required to elucidate the perforin-mediated innate immunity response and to decipher the functional role of perforin in developmental stages.
        264.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Fish larvae are immediately exposed to microbes from hatching to maturation of their lymphoid organs, therefore effective innate mechanisms is very important for survival in such an environment. The key component of innate immune system, C3 is central protein of all activation pathways of the complement system, leading to inflammatory reactions, such as opsonisation, chemotaxis, and cell lysis of pathogens. Although, innate mechanisms is essential for survival in the early stage of development, little is known about defence mechanisms. In this study, the alignment analysis showed that amino acid sequence of C3 from olive flounder liver EST homologous to other known C3 sequences with 73-99% identity. Also, we examined the tissue distribution of olive flounder C3 and analyzed expression pattern from the fertilized egg until 28 days post hatching. As a result, olive flounder C3 mRNA was expressed only in the liver and the mRNA level more increased as developmental proceed during the early stage. These results may suggest that olive flounder C3 plays an important function in the early immune response of olive flounder larvae.
        266.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        Olive flounder (Paralichthys olivaceus) is one of the commercial important flatfish species in Korea. The ocular signal transduction pathway is important in newly hatched flounders because it is closely involved in the initial feeding phase thus essential for survival during the juvenile period. However, the study of gene expression during ocular development is incomplete in olive flounder. Therefore we examined the expression analysis of specifically induced genes during the development of the visual system in newly hatched flounders. We searched ocular development-involved gene in the database of expressed sequence tags (ESTs) from olive flounder eye and this gene similar to arrestin with a partial sequence homology. Microscopic observation of retinal formation corresponded with the time of expression of the arrestin gene in the developmental stage. These results suggest that arrestin plays a vital role in the visual signal transduction pathway of the retina during ocular development. The expression of arrestin was strong in the ocular system during the entirety of the development stages. Our findings regarding arrestin have important implications with respect to its biological role and evolution of G-protein coupled receptor (GPCR) signaling in olive flounder. Further studies are required on the GPCR-mediated signaling pathway and to decipher the functional role of arrestin.
        267.
        2013.09 KCI 등재 서비스 종료(열람 제한)
        Cathepsins are members of the multigene family of lysosomal cysteine proteinases and have regulated function in several life processes. The potential role of cathepsin F cysteine gene was expected as protease in the yolk processing mechanism during early developmental stage, but expression analysis was unknown after fertilization. The alignment analysis showed that amino acid sequence of cathepsin F from olive flounder liver expressed sequence tag (EST) homologous to cathepsin F of other known cathepsin F sequences with 87-98% identity. In this study, we examined the gene expression analysis of cathepsin F in various tissues at variety age flounder. Tissue distribution of the cathepsin F mRNA has been shown to be ubiquitous and constitutive pattern regardless of age in each group, although derived from cDNA library using liver sample. The mRNA level of cathepsin F more increased as developmental proceed during embryogenesis and early developmental stage, especially increased in the blastula, hatching stage and 3 days post hatching (dph). As a result, it may suggest that the proteolysis of yolk proteins (YPs) has been implicated as a mechanism for nutrient supply during early larval stages in olive flounder.
        268.
        2013.08 서비스 종료(열람 제한)
        Olive flounder (Paralichthys olivaceus) is a most important aquaculture species in Korea. Like most marine fishes, olive flounders are stomachless at first feeding and aquired gastric function during the metamorphosis, so food was mainly digested by pancreatic enzyme from first feeding to premetamorphosis. However, comprehensive analysis of pancreatic and gastric digestive enzyme of olive flounder at early developmental period is still unclear. In the expression study of pancreatic and gastric digestive enzyme by real-time PCR at early developmental stage, pancreatic enzyme such as chymotrypsinogen 2, preproelastase 2 and 4, pancreatic protein somatomedin-B domain (PPSB) mRNA expression were initiated at first feeding and strongly expressed in the pancreas developmental stage, while gastric digestive enzyme signal was not at all detected during same period. Although, trypsinogens were secreted from pancreas and have similar amino acid sequence, trypsinogen 3 expression induction was detected both pancreas and stomach developmental stage, while trypsinogen 2 expression was significantly increased only post-metamorphosis period. Pepsinogen mRNA expression was only detected at metamorphosis according to stomach differentiation. Lipid digestive enzyme, lipase and intestine fatty acid binding protein 1 (I-FABP 1), were already reached a certain level at beginning of hatching and more increased during early developmental stage and then gradually decreased before metamorphosis. These results suggested that feed ingestion of olive flounder was exclusive charged by pancreatic digestive enyme, lipid digestive enzyme and trypsinogen 3 from first feeding and then fully swiched by gastric digestive enzyme and trypsinogen 2 from metamorphosis period.
        269.
        2013.08 서비스 종료(열람 제한)
        For the study of population genetic structure with mtDNA, it is essential to measure genetic diversity at each mtDNA regions. Also, to evaluate the variation according to the each region should follow as well as to see if there are differences. In this study, we delved into the variations and dendrogram among samples of seven mtDNA regions (NDⅡ, NDⅤ, NDⅣ, NDⅣL, NDⅥ, NDⅠ, 12SrRNA) from wild Pacific abalone, Haliotis discus hannai collected in Yeosu, Korea. The region with the highest genetic variation was NDⅣ region (Haplotype diversity = 1.0000, Nucleotide diversity = 0.010823) with two to five times higher variation than the others. Furthermore, the study to see if there is a difference between the regions of samples showed that similar aspects of dendrogram in NDⅡ and NDⅠ(divergence of 90% and 87%), which forms a group with hd4, 7, 8 and 10 at bootstrap support, based on 1000 replications. Also, pair-wise FST between clusters within the regions showed high values; 0.4061 (P=0.0000), 0.4805 (P=0.0000) respectively. Therefore we can infer that it is the most efficient and accurate way to analyze the region of NDⅣ with the highest variation in addition to the regions of NDⅡ and NDⅠ, which formed clusters with high bootstrap value, for study of population genetic structure in this species.
        270.
        2013.07 서비스 종료(열람 제한)
        Over the last decades, increasing natural disasters and climate change are considered as the major environmental problems facing the globe. Numerous studies have been indicated it would cause huge losses on agriculture, especially in the grain productivity. Therefore, several alternatives are suggested for boosting up productivity of wheat as one of the main human food crop. One of important strategy is proper management of inflorescence development and DELLA proteins have been elucidated to play pivotal roles in growth of many plant organs. In this study, putative negative regulator of DELLA protein, GAST (Gibberellic acids stimulated transcript) have been isolated to identify their role in the developing spike of wheat. Four genes were isolated from its gene family and designated as TaGAST1, 2, 3, 4. Genomic structure was analyzed to demonstrate chromosomal localization of TaGAST genes and evolutionary relationships were also verified with GAST genes in other plant species. RT-PCR was conducted to detect transcriptional changes of TaGAST genes on external phytohormone. Each of TaGAST genes showed considerable changes in transcription level after GA, ABA, PAC treatment, respectively. Through Yeast two-hybrid assay, one protein for TaGAST1, and four proteins for TaGAST2 was isolated as putative interactive proteins in wheat spikes just before and after emergence.
        272.
        2012.07 서비스 종료(열람 제한)
        Protein disulfide isomerase (PDI) is a chaperone protein that involves in oxidative protein folding by acting as catalysts and folding assistants in the endoplasmic reticulum (ER). Genome database showed that rice contains three PDI-like genes. But, their functions and subcellullar localization are not clearly identified. Here, we show possible functions of rice PDI (OsPDI) during seed development. Seeds of OsPDI T-DNA insertion mutants which were identified by genomic DNA PCR and western blot display chalky phenotype. Electron microscope analysis revealed that endosperms of the OsPDIL1-1Δ mutant show imperfect packing of round starch granules, causing floury-white color. Abnormal form of protein body I (PB-I) containing prolamin and thick aleurone layer were also observed in the OsPDIL1-1Δ mutants. Protein content per seed was significantly low in the OsPDIL1-1Δ mutant. However, free sugar content was high in the OsPDIL1-1Δ mutant seed. Northern and western blot analyses showed that during seed development, OsPDI protein is steadily accumulated in the seed until maturation while its transcript level was highest at 10 days after flowering and rapidly decreased to basal level. In addition, OsPDI strongly interacts with cysteine protease OsCP1 and chaperone BiP protein accumulates in OsPDIL1-1Δ mutant. Besides, proteomic analysis of the OsPDIL1-1Δ mutant seed showed that OsPDI is post-translationally regulated and its loss causes accumulation of many types of seed proteins. Our results indicate that OsPDI plays a critical role in seed development through its regulatory activity for various proteins.
        273.
        2012.07 서비스 종료(열람 제한)
        Rye has important genes for biotic and abiotic stress resistance. Introduction of these genes to wheat by breeding wheat-rye translocation have been intensively used in wheat breeding program. Rye chromatin 1RS and/or 2RL show superior performance in unfavorable environments. In order to develop high yielding wheat, we applied various molecular breeding strategies. To develop EST-derived 1RS specific markers, we used comparative genomics with public sequence databases of Poaceae family. Putative rye chromatin specific sequences were used to design 1RS specific markers. To identify genes related to water deficiency, cDNA AFLP analysis was used in PEG treated seedlings of 1RS RILs. For functional analysis of identified genes and markers, we used Brachypodium distachyon, as a new model plant of temperate grasses. B. distachyon were recently applied for transformation and we constructed Agrobacterium-mediated transformation system. Integration of those strategies and conventional breeding method would enhance the usefulness of rye chromatins for wheat improvement.