검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        21.
        2011.10 구독 인증기관·개인회원 무료
        Preservation of sperm is essential for long-term storage of valuable animal genetic resources and for the conservation of threatened mammalian species undergoing progressive extinction. In this study, using pig as a model system, we evaluated the feasibility of germ-plasm preservation via sperm cell lyophilization. We show that, pig sperm can be successfully lyophilized and stored in a liquid nitrogen-free condition for at least 6 months. Intracytoplasmic injection of lyophilized sperm (ICSI), stored at 4℃ for four months, into in vitro matured pig oocytes could successfully develop up to blastocyst stage (13.0±3.0%). Lyophilized sperm could also be stored at room temperature for at least three weeks without further compromising their in vitro development up to the blastocyst stage (14.6±3.2 vs. 16.6±5.1%; p>0.05). Blastocysts produced from ICSI of lyophilized sperm stored at 4℃ or room temperature contained similar number of cells per blastocyst (44.9±3.2 vs. 44.0±4.3; p>0.05) but was significantly lower than those produced from non-lyophilized fresh sperm (52.1±5.8 p>0.05). Interestingly, use of a custom-designed HEPES-buffered, calcium-free, defined medium for the lyophilization resulted in normal post-ICSI embryonic development up to blastula stage (23.4±2.8 vs. 24.0±2.9%) and, the resultant blastocysts contained similar number of cells per blastocyst (47.9±4.3 vs. 50.6±7.0) compared to those generated from non-lyophilized fresh sperm (p>0.05). These lyophilized sperm could also be stored at room temperature for at least three weeks with slight reduction in post-ICSI embryonic development (19.6±1.4%). Therefore, these results suggest that, pig sperm could be successfully and efficiently lyophilized for their long-term storage at 4℃. Lyophilization of sperm could be a practical option for long-term storage of mammalian germ-plasm.
        22.
        2011.10 구독 인증기관·개인회원 무료
        Autophagy, the process of bulk degradation and recycling of long-lived proteins, macromolecular aggregates, and damaged intracellular organelles, has recently been shown to be important for pre-implantation development and cavitation in mouse embryos. This study investigated the occurrence of autophagy and its importance in determining the in vitro development of pig embryos produced by in vitro fertilization (IVF) or parthenogenetic activation (PA). Western blot analysis for autophagy marker, microtubule associated protein light chain 3 (MAP-LC3), revealed the temporal pattern of LC3-conversion with intense changes during 10 20 h post-insemination and at morula-blastocyst transition in pig embryos. Specific inhibition of autophagy in 2 4 cell stage pig embryos, by treatment with 3-methyladenine (3MA), did not affect their embryonic development up to morula stage (p>0.05) but completely blocked their progression to the blastocyst stage (0.0±0.0 vs. 28.5±1.7% p<0.05). On the other hand, autophagy-inhibition in morula stage embryos significantly inhibited the formation of blastocoel (14.9±3.6 vs. 37.5±7.2%) and reduced the proportion of expanded blastocysts (5.6±2.6 vs. 29.6± 4.6% p<0.05). TUNEL assay revealed that autophagy-inhibited embryos had significantly increased indices of apoptosis (10.2±0.4 vs. 2.3±0.2) and DNA fragmentation (0.8± 0.1 vs. 0.3±0.1) than those of controls (p<0.05). Interestingly, while anti-oxidants reduced (p<0.05) the apoptosis and improved the blastocyst formation rate in pig embryos, it had no influence (p>0.05) on the expression of MAP-LC3. These data therefore, suggest that autophagy may have essential role during blastocyst formation in pig embryos.
        23.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Activated carbon fibers (ACFs) were prepared from cost effective commercial textiles through stabilization, carbonization, and subsequently activation by carbon dioxide. ACFs were characterized for surface area and pore size distribution by physical adsorption of nitrogen at 77 K. ACFs were also examined for various surface characteristics by scanning electron microscopy, Fourier transform infrared spectroscopy, and CHNO elemental analyzer. The prepared ACFs exhibited good surface textural properties with well developed micro porous structure. With improvement in physical strength, the commercial textile grade acrylic precursor based ACFs developed in this study may have great utility as cost effective adsorbents in environmental remediation applications.
        3,000원
        32.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molecular sieving carbon (MSC) for separating O2-N2 and CO2-CH4 has been prepared through chemical vapor deposition (CVD) of methane and benzene on activated carbon spheres (ACS) derived from polystyrene sulfonate beads. The validity of the material for assessment of molecular sieving behavior for O2-N2 and CO2-CH4 pair of gases was assessed by the kinetic adsorption of the corresponding gases at 25℃. It was observed that methane cracking on ACS lead to deposition of carbon mostly in whole length of pores rather than in pore entrance, resulting in a reduction in adsorption capacity. MSC showing good selectivity for CO2-CH4 and O2-N2 separation was obtained through benzene cracking on ACS with benzene entrantment of 0.40×10-4 g/ml at cracking temperature of 725℃ for a period of 90 minutes resulting in a selectivity of 3.31:1.00 for O2-N2 and 8.00:1.00 for CO2-CH4 pair of gases respectively.
        4,000원
        34.
        2015.09 서비스 종료(열람 제한)
        The aim of this study was to enhance the proliferation efficiency of spermatogonial stem cells (SSCs). In order to improve the proliferation efficiency, we investigated new factors that promote the proliferation of SSCs using in vitro culture method with natural plant extracts. Germ cell populations containing SSCs were collected 6- to 8-days-old from C57BL/6-TG-EGFP (C57GFP) mice and SSCs were isolated from the collected cells via magnetic-activated cell sorting (MACS). Since then, SSCs were cultured for a week with culture medium containing natural plant extracts at concentration of 0.1, 1, and 10 μg/mL. After a week of culture, we looked for an increase, especially a dose-dependent increase, in the number of cells compared to that of the control group. A dose-dependent increase, in the number of cells was observed in the Petasides japonicus-treated groups. Furthermore, we carried out repeated experiment that is process consisting of selection and additional segmentation to explore new factors for activating SSCs at the molecular level. As a results, Petasides japonicus butanol fraction significantly increased the proliferation rate of SSCs in a dose-dependent manner among Petasides japonicus fraction samples. We identified normal expression level of PLZF in SSCs cultured with plant extracts using immunocytochemistry method. Furthermore, we also carried out qRT-PCR and identified normal expression level of Lhx1 and GFRα1. The finding of this study could contribute to improvement of proliferation and activation for SSCs, using culture method with natural plant extracts.
        1 2