검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8,334

        881.
        2022.10 구독 인증기관·개인회원 무료
        Based on the results of a review for various precipitation methods phosphorylation (phosphate precipitation) of metal chlorides considered as a proper treatment method for recovering of the fission products in a molten salt. In previous precipitation tests, the powder of lithium phosphate (Li3PO4) added into LiCl-KCl molten salt containing metal chlorides as a precipitation agent. The reaction of metal chlorides containing actinides and rare earths to recover with lithium phosphate in a molten salt known as solid-liquid reaction. The powder of lithium phosphate disperse in a molten salt by stirring thoroughly in order to enhance the precipitation reaction. As a result, metal phosphates as the reaction products precipitate on the bottom of the vessel and cutting at the lower part of the salt ingot considered as one of the recovery method of the precipitates. Recently, the vacuum distillation of upper part of the salt proposed as another recovering method. Cutting method of precipitate at the lower part of the salt ingot would be difficult to handle the increased size of the salt ingot produced from the practical scale equipment. In this presentation, a new method for collecting the precipitates of phosphorylation reaction into a small vessel is introduced with test results in a molten salt containing uranium and rare earths such as Nd, Ce, and La. As the first step of a series of test lithium phosphate ingot was prepared by melting the powder at a temperature 1,300°C, and the ingot put into LiCl-KCl molten salt at 500°C for more than three hours to examine the shape of ingot to be deformed or not. The phosphorylation experiments using lithium phosphate ingots carried out to collect the metal phosphate precipitates and the test result of this new method was feasible.
        883.
        2022.10 구독 인증기관·개인회원 무료
        Under the circumstance of energy transition policy of the previous government in which nuclear energy portion will be gradually reduced, some R&D study looking for alternatives other than Pyro- SFR recycling could be very valuable and timely suitable. New alternative study started to evaluate the possibility of it if there are some advantages in terms of waste burden in case that the spent fuel are appropriately treated and disposed of in a disposal site, instead of recycling of spent nuclear fuels (SNF). The alternative study separate the fission products (minor actinides and rare earths) from SNF in a molten salt medium. The molten salt coming from the alternative study is radioactive and heat generating because it contains the fission products chlorides. It is necessary to collect the fission products from the waste molten salt for minimization of the high-level waste volume and to generate a final waste form containing the fission products compatible to the disposal site. Based on the results of a review for various precipitation methods, phosphorylation (phosphate precipitation) of metal chlorides selected as a proper treatment method for recovering of the fission products in a molten salt. Phosphate precipitation has the potential for removing most of fission product elements from a molten salt arising from the treatment of spent nuclear fuel. The performance of phosphate precipitation method evaluated using a salt mixture with the actinide and rare earth chlorides. The molten salt containing uranium as surrogate of the actinides and three rare earths (Nd, Ce, La) chloride was used for testing a phosphate precipitation method at experimental condition (temperature 500°C, salt stirring 200~300 rpm, and 1~1.2 eq. of phosphorylation agent). A cyclic voltammetry (CV) method monitored in-situ phosphate precipitation progress for determining the precipitation rate and conversion ratio evaluated. The phosphorylation reaction increased greatly at a salt stirring 300 rpm.
        886.
        2022.10 구독 인증기관·개인회원 무료
        The Korea Atomic Energy Research Institute is developing a nuclide management process that separates high heat, high mobility, and long half-life nuclides that burden the disposal of spent fuel, and disposes of spent fuel by nuclide according to the characteristics of each nuclide. Various offgases (volatile and semi-volatile nuclides) generated in this process must be discharged to the atmosphere below the emission standard, so an off-gas trapping system is required. In this study, we introduce the analysis results of the parameters that affect the design of the off-gas trapping system. The analyzed contents are as follows. The physical quantities of the Cs, Tc/se, and I trapping filters according to the amount of spent nuclear fuel, the maximum exothermic temperature of the Cs trapping filter and the absorbed dose by distance by Cs radioactivity were analyzed according to the amount of spent nuclear fuel. In addition, a three-dimensional CFD (Computational Fluid Dynamics) analysis was performed according to operating parameters by simply modeling the off-gas trapping system, which is easy to modify mechanical design parameters. It is considered that the analysis results will greatly contribute to the development of the off-gas trapping system design requirements.
        887.
        2022.10 구독 인증기관·개인회원 무료
        This study is to investigate fuel cladding temperature in a transport system for the purpose of developing a methodology for evaluating the thermal performance of spent fuel. Detailed temperature analysis in the transport system is important because the degradation mechanism of the fuel cladding is generally sensitive to temperature and temperature history. In such a system, the magnitude of the temperature change is determined by examining the temperature sensitivity of fuel assemblies and system components including fuel cladding temperature, considering the material properties, component specifications, component aging mechanism, and heat transfer mechanism. The sensitivity analysis is performed using heat transfer models by computational fluid dynamics for the horizontal transport system. The heat transfer within the system by convection, conduction and thermal radiation is calculated by thermal-hydraulic analysis code FLUENT. The calculation region is divided into a basket cell and a transport cask. The thermal analysis of the basket cell is for predicting the fuel cladding temperature. And the reason for analyzing the transport cask is to provide the boundary condition for the basket cell by reflecting the external environmental conditions. Here, the basket cell containing the spent fuel assembly is modeled on the homogeneous effective thermal conductivity. The purpose of this analysis is to evaluate fuel cladding temperatures for the following four main items. That is the effect of surface emissivity changes in basket due to the oxide layer of the fuel cladding, the effect of degradation of the canister backfill helium gas, the effect of fuel assembly position in basket cell on fuel cladding and basket temperatures in canister, and the effect of using the homogeneous effective thermal conductivity model instead of the fuel assembly in basket cell. As a result of the analysis, the maximum temperatures in basket cells are evaluated for the above four items. Thermal margins for each item are investigated for thermal performance requirements (e.g., peak clad temperature below 400oC).
        891.
        2022.10 구독 인증기관·개인회원 무료
        Due to the saturation of the on-site storage capacity of spent nuclear fuel within a few years, dry storage facility should be introduced. However, it is unclear when to start operating the dry storage facility, so in case of Kori Unit 1, which is being decommissioning, the spent fuel must be stored in the spent fuel pool of another power plant. In addition, in the case of damaged fuel, it is impossible to transfer and store it with general handling methods. Therefore, a damaged fuel canister (DFC) should be able to handle damaged or failed fuel as intact fuel, and both wet and dry storage should be possible. The canister developed by Korea Hydro & Nuclear Power is designed to satisfy criticality, shielding, cooling performance, and structural integrity in accordance with NUREG-1536 and 2215. In addition, it can be handled as existing fuel handling devices rather than new handling tools. Fastening of the DFC lid and body in the spent fuel pool is possible with a hexagonal socket wrench, one of the fuel repair tools. And it is designed to facilitate visual identification of whether it is fastenedor not. The lifting method for transferring DFC to another facility is the same as the nuclear fuel lifting method. And a unique sealing and mesh structure of the lid and body is devised to completely block leakage of nuclear fuel fragments of 0.2 mm or more during vacuum drying for dry storage. The usability of DFC has been verified through test operation of the prototype, and it will be manufactured before discharging spent fuel for the decommissioning of Kori Unit 1.
        893.
        2022.10 구독 인증기관·개인회원 무료
        In ROK, when designing a spent nuclear fuel (SNF) storage facility and cask, criticality safety analysis is performed assuming that the SNF is a fresh fuel in order to ensure conservatism. Storage and transportation capacity can be increased by more than 30% by applying the burnup credit, but it has not been applied to the management of SNF. On the other hand, currently in criticality safety analysis, average burnup value is applied to axial burnup profiles, and it is not conservative because burnup of the middle of SNF is greater than average value. Thus, measuring burnup of SNF with high accuracy contributes to the economics and safety of the management of SNF. In this paper, nondestructive burnup evaluation methods for SNF are reviewed in order to study how to measure burnup more accurately. Gamma ray spectrometry and neutron counting have been used as non-destructive burnup evaluation methods of SNF. Gamma spectrum analysis uses the ratio of Cs-134/Cs-137 or Eu-154/Cs-137. The ratio of Cs-134/Cs-137 is used to SNF with cooling time less than 20 years, and the ratio of Eu- 154/Cs-137 is used to SNF with cooling time more than 20 years due to their half-life. In spectrum analysis, detector sensors with high efficiency and energy resolution are needed to clarify each spectrum. High-purity germanium (HPGe) detector has high energy resolution. However, it is not suitable for the analysis of the SNF in the spent fuel pool because it requires separate cooling system and large volume. Thus, CdZnTe (CZT) detector, which has medium energy resolution, is used as a detector of gamma ray spectrometry for the analysis of the SNF in the spent fuel pool. Recently, LaBr3 detector has been commercialized. Although it is difficult to compare clearly due to different conditions such as detector volume and crystal size, LaBr3 detector showed better resolution than CZT in the entire energy region. Neutron counting method has a large error compared to gamma spectrometry because the neutron flux is lower than gamma ray, and neutron absorption reaction, induced fission, and pool environment have to be considered. Large quantity of gamma energy is deposited in the detector by the fission fragments near the SNF. Therefore, fission chambers, which have the highest insensitivity to gamma rays, must be used as neutron detector in order to avoid noise from gamma rays.
        895.
        2022.10 구독 인증기관·개인회원 무료
        Thermal analysis and safety assessment of spent fuel transport cask are mainly conducted using commercial Computational Fluid Dynamics (CFD) codes based on Finite Volume Method (FVM). The reliability and predictability of CFD codes have greatly been improved by the development in the computer systems, and are widely used to calculate heat flow in complex structures that cannot be analyzed theoretically. In the field of thermal analysis using the CFD code, it is important to clearly reflect the physical model of the transport cask, and a grid configuration suitable for the physical model is essential for accurate analysis. However, since there are no clear standard and guidelines for grid configuration and size, it is highly dependent on the user’s insight. Spatial discretization errors result from the use of finite-width grids and the approximation of the differential terms in the model equations by difference operators. Since the user usually cannot change the truncation error order of a given discretization scheme, spatial discretization errors can only be influenced by the provision of optimal grids. Therefore, it is necessary to quantify the spatial discretization errors caused by the grid. In the case of Orano TN’s NUHOMS® MP197 transport cask, considering four grids for two sets, the temperature uncertainty of the neutron shield, which has the lowest margin at the limit temperature among transport cask components, was quantified by applying 5-step procedure of the Grid Convergence Index (GCI) method for the uncertainty estimation presented in ASME V&V 20-2009. In the case of domestic spent nuclear fuel transport cask (KORAD21), neutron shield among the transport cask components has the lowest margin at the limited temperature. Accordingly, in this study, the temperature uncertainty of the neutron shield was quantified by applying GCI to three sets considering seven grids. As a result of the calculation, the uncertainty was less than ± 1°C, and the temperature of the neutron shield including the uncertainty was evaluated to be maintained below the limit temperature of 148°C.
        898.
        2022.10 구독 인증기관·개인회원 무료
        Interests in molten salt reactor (MSR) using a fast spectrum (FS) have been increased not only for having a high power density but for burning the high-level waste generated from nuclear power plants. For developing the FS-MSR technologies, chloride-based fuels are considered due to the advantage of higher solubility of actinides and lanthanides over fluoride-based salts. Despite significant progress in development of MSR technology, the manufacturing technology for production of the fuel is still insufficiently understood. One of the option to prepare the MSR fuel is to use products from pyroprocessing where oxide form of spent nuclear fuel is reduced into metal form and useful elements can be collected via electrochemical methods in molten salt system at high temperature. In order to chlorinate the products into chloride form, previous study used NH4Cl to chlorinate U metal into UCl3 in an airtight reactor. It was found that the U metal was completely chlorinated into chloride forms; however, impurities generated by the reaction of NH4Cl and reactor wall were found in the product. Therefore, in this work, the air tight reactor was re-deigned to avoid the reaction of reactor wall by insertion of Al2O3 crucible inside of the reactor. In addition, the reactor size was increased to produce UCl3 over 100 g. Using the newly designed reactor, U metal chlorination experiments using NH4Cl chlorinating agent were performed to confirm the optimal experimental conditions. The detailed results will be further discussed.
        899.
        2022.10 구독 인증기관·개인회원 무료
        It has been studied on the disposal area reduction for the used nuclear fuel by the management of high decay-heat nuclides, long-lived nuclides, and highly mobile nuclides. It was investigated on the management of the nuclides in KAERI. Strontium-90 is a high heat-generating nuclide in spent nuclear fuel. It is needed to separate the salt from the salt solution for the recovery of strontium after the chlorination of the strontium oxide in molten salt. Vacuum distillation was used for the separation of strontium from the molten salt. Potassium carbonate was chosen as a reactive distillation reagent for SrCl2 – LiCl – KCl system by the thermodynamic calculation. Reactive distillation experiments were carried out. The residual was mainly SrCO3 in the XRD analysis. It could be concluded that K2CO3 could be one of the suitable reagents for the reactive distillation. The salt in the long–lived nuclide powders should be removed to prepare the block for disposal. Experiments were carried out using W powders (surrogate) and U3O8 powders to develop a process for the removal of the residual salt from UOx powders. The salts were successfully removed from the W and U3O8 powders by distillation.