검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 214

        121.
        2013.07 서비스 종료(열람 제한)
        Gibberellic acid (GA) is a well-characterized plant hormone, which plays a critical role in various plant growth and development. including stem elongation, floral indcution and seed development. GA is known to cause enlargement of ripening fruits and, especially in grapevines, GA shows a unique function: the induction of seedlessness in seeded grape varieties. However, despite extensive previous studies about GA, there has been no clear verification of the mechanism that induces seedlessness in grapes. To understand how GA treatment results in artificial parthenocarpy of seeded grapes at molecular levels, we analyzed transcriptional changes in seeded grapes with and without GA application in various inflorescence developmental stages using RNA-seq. At 14 days before flowering (DBF), seeded grapes were treated with 100 ppm GA and clusters were collected at three developmental stages: 7 DBF, full bloom, and 5 days after flowering (DAF). Of a total of 28,974 genes that were mapped to grape genome reference sequences, 7,013 and 9,064 genes were up- and down-regulated, respectively, in the GA-treated grape as compared to the non-GA-treated control at 7 DBF, full bloom, and 5 DAF. Clustering analysis revealed that these genes could be grouped into 9 clusters with different expression patterns. We also carried out functional annotation based on gene ontology categories. There were significant differences in the expression of the GA and auxin-related gene families. These findings expand our understanding of the complex molecular and cellular mechanisms of GA-induced parthenocarpy of grapes and provide a foundation for future studies on seed development in grapevines.
        122.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        Twenty two common millet (Panicum miliaceum L.) varieties collected from Korea, China and Russia were investigated for their phylogenetic relationship using 5S ribosomal DNA sequences with a hope to provide the basic information on their exact origin. Sequences of 5S rDNA were isolated by PCR. The primers, 5s-rRNA1 and 5s-rRNA2, were designed to isolate the complete NTS. Genomic DNA amplification produced two fragments with different length, 900 bp and 400 bp fragments, confirming the presence of two types of 5S rDNA repeats that differed from each other in the length of the NTS region. Amplified DNAs of 400 bp fragment were subcloned and used for further investigation. The obtained NTS sequences ranged from 200 to 300 bp and homology of sequences among plant materials was much higher than long repeat. CLUSTALW multiple aligment of 5S rDNA sequences from 22 different common millets revealed the clear difference by their origin. And critically different areas with insert or deletion were also confirmed. Those sequence difference seems to be used for discrimination of cultivars from different origin and use as molecular markers for origin identification. In phylogenic tree construction, the clear classification was shown where the genotypes from China and Russia is positioned together and stay away from domestic genotypes.
        123.
        2012.07 서비스 종료(열람 제한)
        Understanding the host defense mechanisms in response to brown leaf spot disease caused by Cochliobolus miyabeanus is very important for production of resistant plant. In this study, two-dimensional gel electrophoresis (2-DGE) in conjunction with mass spectrometry was utilized to unravel changes of stress inducible proteins in rice leaves infected with C. miyabeanus. For this purpose, we firstly observed disease developmental process of C. miyabeanus in rice using trypan blue, anilin blue, acid fuchsin staining, and DAB staining for ROS detection and expressional abundance of ROS related proteins in rice leaves inoculated was confirmed by Western blotting. Proteins were extracted by PEG fractionation and their expression patterns were analyzed by 2-DGE and subjected to image analysis using the ImageMaster 6.0 2D Platinum software, resulting in the identification of 86 differentially expressed protein spots with significantly changes (p<0.05) compared with control. MALDI-TOFTOF-MS analysis revealed that 69 proteins including 42 and 27 significantly up- and down-regulated proteins, respectively, were identified. Based on gene ontology analysis, identified proteins were classified according to their functional groups: metabolism (20%), oxygen-detoxifying (13%), protein stress/defense (24%). Thus, these results for the first time suggest that differentially induced proteins may play a key role for understanding host defense mechanisms during rice -C. miyabeanus interaction.
        129.
        2010.12 KCI 등재 서비스 종료(열람 제한)
        DNA 메틸화 (DNA methylation)는 유전자의 발현을 조절하는 대표적인 후생학적 조절기작 (epigenetic regulation) 중에 하나이다. DNA 메틸화 양상은 생식세포 형성과정 및 배 발생단계에서 탈메틸화 (demethylation)와 de novo 메틸화의 드라마틱한 변화가 일어난다. 또한 이러한 DNA 메틸화는 배아줄기세포 (embryonic stem cells, ESCs)에서 특징적인 양상을 보이는 것으로 알려져 있다. 본 연구에서는 생쥐 수정란 유래 배아줄기세포와 체세포핵이식 배아줄기세포 (nuclear transplanted ESCs)를 이용해서 대표적 각인유전자 (imprinting genes)로 알려진 Snrpn, Igf2r, H19 유전자들에 대한 메틸화 양상을 알아보고자 하였다. 연구 결과 H19 유전자에 대해서는 DNA 메틸화 양상은 수정란 유래 배아줄기세포와 체세포핵이식 배아줄기세포에서 비슷한 경향을 보였으나, Snrpn과 Igf2r의 경우에는 체세포핵이식 배아줄기세포에서 과메틸화 (hypermethylation) 경향을 보였다.
        130.
        2010.10 KCI 등재 서비스 종료(열람 제한)
        Riptortus clavatus, one of the many insects in major crops, damages pods and seeds, which reduces seed vigor and viability in soybeans. This study was conducted to examine the effect of diversely damaged seeds by R. clavatus on seed germination and seedling emergence and to determine the association of damaged seed with quality and yield of soybean sprouts. All seeds damaged by R. clavatus significantly (P<0.05) reduced seed vigor as measured by the rates of seed germination, germination speed, and seedling emergence. Mean seed germination rate of non-damaged seeds in sprout-soybean varieties was 97.8%, whereas the rates of seeds damaged at different levels, 31-50% and 51-80%, were 23.0 and 5.4%, respectively. The rates of seedling rot and abnormal, incomplete germination significantly (P<0.05) increased as the amount of seeds damaged by R. clavatus increased to 5, 10 and 15% against the total seeds for sprout production. Yield of soybean sprouts from seeds damaged at different levels decreased up to 13% as compared to that in normal seeds. In customer preferences on soybean sprout produce, 84% of customers participated in survey preferred to purchase sprouts from seeds with 5% of damaged seeds, but sprouts produced from seeds with 15% of damaged seeds were intended to purchase only by 22% of the customers. Areas of the seed damaged by R. clavatus were readily infected by pathogens as the seed germinated, resulted in deteriorated quality and reduced yield of sprout produce.
        137.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        Most vacuolar proteins are synthesized on the endoplasmic reticulum (ER) as a proprotein precursor and then transported to vacuoles. In vacuoles, they are converted into the respective mature form. TaVPE1 and TaVPE2 were isolated from the cDNA library that was prepared from the wheat kernels at 16 and 18 days after fertilization (DAF). Additionally, putative TaVPEs (TaVPE3, TaVPE4) were isolated by inverse PCR (IPCR) using GrainGenes database. Each open reading frame (ORF) encodes 495, 497, 495, 456 amino acids, respectively. TaVPEs were closely related in respect to peptide comparisons and their sequence homologies were ranged from 84% to 93%. The TaVPE genes showed various expression patterns in response to exogenous treatment of phytohormones. The transcript of TaVPE1 was detected slightly and steadily after exposure to all phytohormones and the accumulation of TaVPE2 transcript was increased from 24 hours in NaCl treatment. The transcript of TaVPE3 was increased from 48 hours in response to H2O2 and decreased after exogenous application of ABA and salicylic acid. In case of TaVPE4, the transcript of TaVPE4 were weakly detected all time points of each phytohormone treatment.