명나방과의 2종, Hypsopygia iwamotoi Kirpichnikova & Yamanaka, 1995와 Synaphe amuralis (Hampson, 1900)이 중국에서는 처음으로 보고된다. 본 연구에서는 이들 2종에 대하여 재기재하고 성충 및 생식기의 도해도를 제시하였다.
The objective of this study was to examine the effects of high concentrations of glucose on porcine parthenotes developing in vitro. Addition of 55 mM glucose to the culture medium of embryos at the four-cell-stage significantly inhibited blastocyst formation, resulting in fewer cells in blastocyst-stage embryos and increased levels of apoptosis and autophagy compared to control. Quantitative reverse transcriptase (RT) PCR analysis revealed that the expression of pro-apoptotic genes (Caspase 3, Bax and Bak) and autophagy genes (Atg6 and Atg8/Lc3) were increased significantly by the addition of 55 mM glucose to the culture medium compared to control. MitoTracker Green fluorescence revealed a decrease in the overall mitochondrial mass compared to control. However, the addition of 55 mM glucose had no effect on mRNA expression of the nuclear DNA-encoded mitochondrial-related genes, cytochrome oxidase (Cox) 5a, Cox5b and Cox6b1. These results suggest that hyperglycemia reduced the mitochondrial content of porcine embryos developing in vitro and that this may hinder embryonic development to the blastocyst stage and embryo quality by increasing apoptosis and autophagy in these embryos.
Developmental potential of cloned embryos is related closely to epigenetic modification of somatic cell genome. The present study was to investigate the effects of applying histone deacetylation inhibitor, trichostatin A (TSA) to activated porcine embryos on subsequent development of porcine parthenogenetic and nuclear transfer embryos. Electrically activated oocytes were treated with 5 nM TSA for different exposure times (0, 1, 2 and 4 hr) and then the activated embryos were cultured for 7 days. The reconstructed embryos were treated with different concentrations of 0, 5, 10 and 25 nM TSA for 1 hr. Also 5 nM TSA was tested with different exposure times of 0, 0.5, 1, 2 and 4 hr. And fetal fibroblast cells were treated with 50 nM TSA for 1, 2 or 4 hr and with 5 nM TSA for 1 hr. Cumulus-free oocytes were enucleated and reconstructed by TSA-treated donor cells and electrically fused and cultured for 6 days. In parthenogenetic activation experiments, 5 nM TSA treatment for 1 hr significantly improved the percentage of blastocyst developmental rates than the other groups. Total cell number of blastocysts in 1 hr group was significantly higher than other groups or control. Similarly, blastocyst developmental rates of porcine NT embryos following 5 nM TSA treatment for 1 hr were highest. And the reconstructed embryos from donor cells treated by 50 nM TSA for 1 hr improved the percentage of blastocyst developmental rates than the control group. In conclusion, TSA treatment could improve the subsequent blastocyst development of porcine parthenogenetic and nuclear transfer embryos.
Plasmids are crucial for determining the pathogenicity and host range of organisms of the Bacillus thuringiensis strains. In this research, a novel serogroup of B. thuringiensis serovar mogi (H3a3b3d), which showed mosquitocidal activity against Anopheles sinensis and Culex pipiens pallens, was isolated from fallen leaves in Mungyeong city, Republic of Korea. In contrast to the complicated plasmid profiles of B. thuringiensis H3 serotype strains, the B. thuringiensis serovar mogi contained two megaplasmids (> 30 MDa) on which the toxin genes were occasionally located. Sequence analysis using 454-pyrosequencing revealed that there are 7 putative cry genes, cry19Bb1, cry73Aa, cry40orf2, cry20Bb1, cry27Ab1, cry56Ba1 and cry39orf2, distributed on the two different megaplasmids, respectively. These cry genes were cloned to the Escherichia coli-B. thuringiensis shuttle vector, pHT1K under the control of its own promoter and p1KSD, which is a recombinant expression vector containing cyt1Aa promoter combined with the STAB-SD sequence, and then introduced into an acrystalliferous B. thuringiensis Cry-B strain for further molecular characterization. To investigate the role of these genes in crystal production, the expression profiles of these toxin genes were analyzed by quantitative PCR (qPCR) from the wild type strain. These results clearly indicate that the cry39orf2 was the dominant ingredient in the crystal. This novel 3a3b3d type strain, B. thuringiensis serovar mogi, could be used as a good resource for studying unknown mosquitocidal cry genes.
ORF78 (ac78) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a baculovirus core gene of unknown function. To determine the role of ac78 in baculovirus life cycle, an ac78-deleted mutant AcMNPV, Ac78KO, was constructed. Quantitative PCR analysis revealed that ac78 is a late gene in the viral life cycle. After transfection into Spodoptera frugiperda cells, Ac78KO produced a single-cell infection phenotype indicating that no infectious budded viruses (BVs) were produced. The defection in BV production was also confirmed by both viral titration and Western blot. However, viral DNA replication is unaffected. Analysis of BV and occlusion derived virus (ODV) revealed that AC78 is associated with both forms of the virions and is a structural protein located to viral envelope. Electron microscopy showed that ac78 also plays an important role in embedding of ODV into occlusion body. This study therefore demonstrates that AC78 is a late virion associated protein and is essential for the viral life cycle.
ORF11 (ac11) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene of unknown function. To determine the role of ac11 in baculovirus life cycle, an ac11-knockout mutant AcMNPV, Ac11KO, was constructed. qPCR analysis revealed that ac11 is an early gene in the life cycle. After transfection into Spodoptera frugiperda cells, Ac11KO produced a single cell infection phenotype indicating that no infectious budded viruses (BVs) were produced. The defection in BV production was confirmed by both viral titration and Western blot. However, viral DNA replication is unaffected. Electron microscopy showed that ac11 is required for nucleocapsids envelopment to form ODV and their subsequent embedding into OB. This study therefore demonstrates that ac11 is an early gene which is essential for the viral life cycle.
Crystals of proteinaceous insecticidal proteins, Cry proteins, produced by Bacillus thuringiensis (Bt) have been generally used to control insect pests. In this study, through the 3D structure prediction and accompanying mutagenesis study for the Mod-Cry1Ac, 7 and 16 amino acid residues from domain I and II, respectively, responsible for its insecticidal activity against larvae of Spodoptera exigua and Ostrinia furnacalis were identified. To construct novel cry genes with enhanced insecticidal activity, we randomly mutated these 23 amino acid sequences by in vitro muti site-directed mutagenesis, resulting in totally 24 mutant cry genes. For further characterization, these mutant cry genes were expressed as a fusion protein with polyhedrin using baculovirus expression system. SDS-PAGE analysis of the recombinant polyhedra revealed that expressed Cry proteins was occluded into polyhedra and activated stably to 65 kDa by trypsin. When the insecticidal activities of these mutant Cry proteins against to larvae of P. xylostella and S. exigua were assayed, they showed higher or similar insecticidal activity compared to those of Cry1Ac and Cry1C. Especially, among them Mutant-N16 showed the highest insecticidal activity against to both of P. xylostella and S. exigua. Therefore, Mutant-N16 is considered to have the potential for the efficacious biological insecticide.
Among hemipteran insects which is the most important insect vector of plant viruses, small brown planthopper, Laodelphax striatellus, transmits the rice stripe virus (RSV) causing rice stripe disease. For effective control of RSV, it is important to understand interaction between RSV and L. striatellus. Therefore, in this study, expressed sequence tag (EST) databases were generated based on 454 GS-FLX pyrosequencing for comparative transcriptome analysis between nonviruliferous and RSV-viruliferous L. striatellus. By comparing the two EST libraries, we showed that 108 host genes were significantly up-regulated and 28 host genes were significantly down-regulated in viruliferous insects. Interestingly, genes encoding ribosomal proteins were mainly up-regulated in viruliferous L. striatellus, whereas genes related to translation were concentrated in the downregulated cohort. These RSV-dependently regulated genes may have important function in the behavior of planthopper or the transmission of RSV.
Bacillus thuringiensis serovar mogi of a novel serogroup (H3a3b3d), which showed mosquitocidal activity against Anopheles sinensis and Culex pipiens pallens, was isolated from fallen leaves in Mungyeong city, Republic of Korea. In contrast to the complicated plasmid profiles of B. thuringiensis H3 serotype strains, the B. thuringiensis serovar mogi contained only megaplasmid (> 30 MDa) on which the toxin genes were occasionally located. Sequence analysis using 454-pyrosequencing revealed that the megaplasmid harbored at least seven putative cry genes, showing about 84%, 75%, 73%, 58%, 84%, 39% and 75% similarities in amino acid sequences with Cry27Aa, Cry19Ba, Cry20-like, Cry56Aa, Cry39ORF2, Cry8Ba and Cry40ORF2, respectively. These cry genes were cloned to the Escherichia coli-B. thuringiensis shuttle vector, pHT1K, and then introduced into an acrystalliferous B. thuringiensis Cry-B strain for further molecular characterization. To investigate the role of these genes in crystal production, the expression profiles of these toxin genes were analyzed by quantitative real-time PCR (qrtPCR) from the wild type strain as well as transformant strains. The results clearly indicate that the cry39orf2 was the dominant ingredient in the crystal. This novel 3a3b3d type strain, B. thuringiensis serovar mogi, could be used as a good resource for studying unknown mosquitocidal cry genes.
The baculovirus expression system is one of the most popular methods used for the production of recombinant proteins but has several complex steps which have proved inherently difficult to meet a multi-parellel process. We have developed a novel recombinant bacmid, bEasyBm that enabling easy and fast generation of pure recombinant virus without any purification step. In the bEasyBm, attR recombination sites were introduced to facilitate the generation of recombinant viral genome by in vitro transposition. Moreover, extracellular RNase gene from bacillus amyloliquefaciens, barnase, was expressed under the control of Cotesia plutellae bracovirus early promoter. Therefore, only when the barnase gene was replaced to gene of interest, the bEasyBm could replicate in host insect cells. When the bEasyBm was transposed with pDualBac-EGFP and pDualBac-LUC respectively, there were no non-recombinant backgrounds were detected from unpurified BmEasy-EGFP or BmEasy-LUC stocks. In addition, the resulting recombinant virus, BmEasy-EGFP, showed comparable level of EGFP expression efficiency with the plaque-purified recombinant virus, BmEGFP, which was constructed using bBmGOZA system. Based on these results, high-throughput condition for generation of multiple recombinant viruses in a time was established.
Varieties of Bacillus thuringiensis (Bt) crystal proteins, Cry proteins, have so far been found as one of the most successful biological control agents which are safe to natural environments for a long time. Recently, cry genes encoding these Cry proteins have been widely applied for construction of transgenic crops resistant to pest insects. In this study, through the 3D structure prediction and accompanying mutagenesis study for the Mod-Cry1Ac, 7 and 16 amino acid residues from domain I and II, respectively, responsible for its insecticidal activity against larvae of Spodoptera exigua and Ostrinia furnacalis were identified. To construct novel cry genes with improved insecticidal activity, we randomly mutated these 23 amino acid sequences by in vitro muti site-directed mutagenesis, resulting in totally 24 mutant cry genes. For further characterization, these mutant cry genes were expressed as a fusion protein with polyhedrin using baculovirus expression system. SDS-PAGE analysis of the recombinant polyhedra revealed that expressed Cry proteins was occluded into polyhedra and activated stably to 65 kDa by trypsin. In the further study, we plan to investigate their insecticidal activity against Plutella xylostella, S. exigua and O. furnacalis larvae.
With escalating economic growth during the last three decades, flower industry of China, especially cut flower is sharply developed. In this paper a brief review of the cut flower current situation of globe and current status of flower industry of China especially of cut flower in the world is presented. The acreage, yield, potential of cut flower in China along with distribution of major cut flower products and constraint of cut flower also was indicated in this paper was also presented.
A new model and resultant equation for the coagulation of acrylonitrile monomers in precipitation polymerization are suggested in consideration of the surface tension (γ) and cohesive energy density (ECED). The equation was proven to be quite favorable by considering figure fittings from known surface tensions and cohesive energy densities of certain organic solvents. The relationship between scale value of surface tension (γ/M) and cohesive energy density of monomers can be obtained by changing the coagulation bath component for effective precipitation polymerization of acrylonitrile in wet spinning.
Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/β-tricalcium phosphate (β-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by CO2 bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The β-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.
It is well established that mitochondrial genome is strictly maternally inherited in mammalian, despite the fact that paternal mitochondria enter into oocyte during fertilization. To date, although some mechanisms have been extrapolated to interpret the elimination of paternal mitochondria, the exact mechanism still is unclear. Recent studies suggest that autophagy process and the ubiquitin-mediated degradation pathway may be involved in elimination of paternal mitochondria. However, the dynamic profiles of autophagy and ubiquitination associated with paternal mitochondria degradation have not been determined in mouse model. Through immunostaining with specific antibody LC3 and Ubiquitin and confocal microscopy, we investigated the dynamic profiles of LC3 and Ubiquitin signals in mouse embryos during preimplantation development. In addition, embryos were stained with MitoTracker Red for tracking the degradation process of paternal mitochondria. Our results showed that paternal mitochondria gradually degraded during postfertilization development, and sporadic paternal mitochondria were found at least in 16 cell embryos. LC3 and Ubiquitin signals appeared in the midpiece of sperm at 3 h postfertilization, and they were strictly colocalizated with paternal mitochondria from zygote to 2 cell embryo. Nevertheless, the colocalization became loose at 4 cell embryos, and gradually disappeared beyond 4 cell embryos. Our results confirmed that autophagy process and the ubiquitin-mediated degradation pathway may take part in the postfertilization remove of paternal mitochondria.
Superovulation, or ovarian stimulation is a commonly used ART for treatment of human infertility/subfertility. Recent studies suggest that superovulation unaffects methylated imprints acquisition in mouse oocytes during oogenesis, whereas disrupts DNA methylation maintenance in embryos during preimplantation development. However, the mechanisms of defects in methylation maintanence caused by superovulation remain largely unclear. We hypothesized that superovulation may disrupt the expression of DNA methyltransferases (Dnmts), the enzymes which catalyze DNA methylation acquisition and maintenance. The mice were subjected to superovulate with low (6 IU) and high (10 IU) dosage hormone. We examined the global DNA methylation levels in zygotes and DNA methylation of repeated sequences (IAP and Line 1) in blastocyst stage embryos. In addition, we investigated the expression of Dnmts (Dnmt3a, Dnmt3b, Dnmt3l and Dnmt1o) in ovulated oocytes and zygotes. Through staining with antibody 5mC and Di-H3K9 coupled with confocal microscopy, we found that global methylation profiles in zygotes derived from females after low or high dosage hormone treatment were not affected when compared to control counterpart. Moreover, methylation at IAP in blastocysts also was unaffected by superovulation, irrespective of hormone dosage. In contrast, methylation level at Line 1 decreased when the females were administered by high dosage hormone. Furthermore, expression of de novo DNA methyltransferase Dnmt3a, Dnmt3b, Dnmt3L, as well as maintenance Dnmt1o in MII oocytes and zygotes was not disrupted by superovulation. Given superovulation adversely affected methylation maintenance in blastocysts during preimplantation development but with normal expression of Dnmts in oocytes and zygotes, it is indicated that defects of embryonic methylation didn’t originate from abnormal expression of Dnmts.
Although evidences showed that histone deacetylation plays an important role in the mitotic and meiotic cell cycle, but the mechanisms are still unclear. Level of histone acetylation can be easily changed by deacetylase inhibitors (HDACi) i.e trichostatin A (TSA) and valporic acid. In this study, we determined whether the inhibition of histone deacetylation by TSA could affect porcine oocyte maturation and aging process. Our results showed that treated COCs with 100 nM TSA significantly increase the GVBD in each time group than 0, 5, 50 nM but no significantly different from that of higher concentration (200 nm or 300 nM). No significant differences on maturation, blastocyst development, MAPK pattern and expressions of apoptosis gene when treated oocytes with 100 nM TSA for the first 24h of IVM compared with control and 5, 50 nM TSA. However, in the oocytes treated with 200 nM and 300 nM TSA for first 24 h, MAPK significantly decreased and abnormal spindle were observed. But, in prolonged (64 h) of TSA treated group has no significantly different in control. Another data observed that after 24h TSA-treat to prolonged group were significantly decreased of MAPK activation and normal spindle than the other group. We concluded that TSA played a critical role in meiotic progression in porcine oocytes through the regulation of arrest GVBD, which prolonging the in vitro maturation time, but unaffected the subsequent pre-implantation embryo developmental potential and embryonic qualities. Moreover, the histone deacetylase inhibitor TSA may artificially control porcine oocyte maturation time and delay porcine oocyte aging process.