In this paper, the results of evaluating the passenger comfort due to the standard deviation of acceleration in vertical and lateral direction regarding the ship response in irregular wave by ordinary strip method in regular wave and energy spectrum using linear superposition theory in order to evaluate the motion of experimental ship are as follows. According to the results of ship response, it was possible to find that, in order to reduce the motion of ship, a ship operating in bow sea was more stable than in quartering sea. In the results of analyzing the standard deviation of acceleration in vertical direction according to each component wave pattern, when there was a wave length of 56m and an average wave period of 6 sec, most of cases showed the peak value. And among them, the standard deviation was 0.35 which was the highest in head sea. And in case of lateral direction, the maximum value was shown in a wave length of 100m and an average wave period of 8 sec. And it was 0.16 in beam sea and χ = 150°. In the evaluation of passenger comfort due to standard acceleration in vertical and lateral direction, it was 80% in head and bow sea. On the other hand, it was shown to be 15% in follow sea. Accordingly, when the expected wave height in a sea area where a training ship was intended to operate was known, it was possible to predict the routing of ship. And altering her course could reduce the passenger comfort by approximately 50%.
In order to deduce an objective evaluation method of motion seasickness incidence (MSI) by ship motions during underway in irregular waves and to present the fundamental data of passenger comfort on the yacht and the passenger ship according to the result, the MSI of the trainees by the questionnaires was analysed and compared with the rate of variation of salivary a -amylase activity (VSAA) on the training ship "A-ra ho" of Jeju national university. Relationship between rate of variation (x) by salivary a -amylase activity and motion seasickness incidence (y) was described by the equation, MSI(%) = 0.6073 x + 12.189 including the correlation coefficient (R 2 = 0.9853). The result obtained through the rate of variation of salivary a -amylase activity which was the quantitative evaluation method for ship motions causing seasickness was most affected by z-vertical acceleration and occurred within the frequency range 0.1 to 0.3Hz centered on 0.2Hz, and the simulation result based on this finding showed the motion seasickness rate at approximately 4% lower than the rate obtained through the survey.