검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        안정적인 선원 수급을 위해서는 선원의 임금 보장이 필수적이다. 하지만 선원들이 임금을 제대로 받지 못하는 임금체불 분쟁 이 발생하고 있다. 본 연구에서는 선원 임금체불을 해결하기 위해 블록체인 기반 스마트 컨트랙트를 이용하여 임금지불 자동체결시스템 을 설계하였다. 설계한 시스템은 정보등록부, 매칭처리부, 평점관리부, 스마트 컨트랙트를 배포하기 위한 임금 송금 등으로 구성된다. 매 칭처리부는 선원과 선주의 자동알림설정을 위해 임금, 선종/어업, 직위, 면허 등 4가지 변수의 가중치 합이 임계값보다 넘으면 전송되도록 설계하였다. 또한, 평상시 근로조건을 상호 간 잘 이행해 나갈 수 있는 매개체 역할을 위해 평균과 중앙값을 조합하여 평점관리방식을 제 시하였다. 스마트 컨트랙트는 중개자 없이 당사자 간 근로계약을 자동으로 이행하게 함으로써 선주에 의한 임금체불 문제뿐만 아니라 선 원에 의한 선불금 사기, 무등록 직업소개소업자의 횡령, 선원수첩 위조 등의 문제들이 자연히 해결될 것이다. 이러한 시스템 설계가 상용 화되어 제도적으로 활성화될 경우, 선원에게는 안정적인 임금보장과 더불어 선주에게는 인력수급의 어려움이 해결될 것으로 기대된다. 향후 본 시스템 개발을 위해 로컬 환경에서 테스트할 예정이다.
        4,000원
        2.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a drifting test using a experimental vessel (2,966 tons) in the northern waters of Jeju was carried out for the first time in order to obtain the fundamental data for drift. During the test, it was shown that the average leeway speed and direction by GPS position were 0.362 m/s and 155.54° respectively and the leeway rate for wind speed was 8.80%. The analysis of linear regression modes about leeway speed and direction of the experimental vessel indicated that wind or current (i.e. explanatory variable) had a greater influence upon response variable (e.g. leeway speed or direction) with the speed of the wind and current rather than their directions. On the other hand, the result of multiple regression model analysis was able to predict that the direction was negative, and it was demonstrated that predicted values of leeway speed and direction using an experimental vessel is to be more influential by current than wind while the leeway speed through variance and covariance was positive. In terms of the leeway direction of the experimental vessel, the same result of the leeway speed appeared except for a possibility of the existence of multi-collinearity. Then, it can be interpreted that the explanatory variables were less descriptive in the predicted values of the leeway direction. As a result, the prediction of leeway speed and direction can be demonstrated as following equations. However, many drift tests using actual vessels and various drifting objects will provide reasonable estimations, so that they can help search and rescue fishing gears as well.
        4,000원
        6.
        2020.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to offer specific information needed to assist in operation of a ship with same type rudder through evaluating the maneuverability of training ship A-Ra with flapped rudder, sea trials based full scale for turning test, zig-zag test with rudder angle 10° and 20°, and spiral test at service condition were carried out on starboard and port sides around Jeju Island according to the standards of maneuverability of IMO. As a result, the angular velocity of port turn was higher than that of starboard turn. Therefore, the size of turning circle was longer on the starboard side. In addition, variation of the transfer due to various factors was more stable than those of the others. In the Z-test results, the mean of 1st and 2nd overshoot angles were 9.8°, 6.3° and 15.3°, 9.2° respectively when the port and starboard was 10°; the 1st overshoot angle were 18°, 13.7° when using 20°. Her maneuverability index Tˊ and Kˊ can be easily determined by using a computer with the data obtained from Z-test where Kˊ and Tˊ are dimensionless constants representing turning ability and responsiveness to the helm, respectively. In the Z-test under flap rudder angle 10°, the obtained Kˊ value covered the range of 2.37-2.87 and Tˊ was 1.74-3.45. Under the flap rudder angle 20°, Kˊ and Tˊ value showed 1.43-1.63, 1.0-1.73, respectively. In the spiral test, the loop width was unstable at +0.3° and –0.5°-0.9° around the midship of flap rudder. As a result, course stability was comparatively good. From the sea trial results, training ship ARA met the present criterion in the standards of maneuverability of IMO.
        4,200원
        7.
        2019.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We collected AIS information on fishing vessels operating near Jeju Island, and analyzed appearance density of the Chinese fishing vessels and inferred the movements of the fishing grounds. AIS information was received from October 16, 2016 to October 16, 2017 and stored on a hard disk through a program called AisDecoder. Unauthorized fishing vessels within the Exclusive Fisheries Agreement Zone (EFAZ) operated near the EFAZ boundary, and the frequency of appearance of fishing vessels were high in the middle waters of Korea and Japan, 252 and 250 fishing zones. Chinese fishing vessels authorized to enter appeared scattered outside the Prohibiting Fishing Zone of the Large Trawlers (PFZLT), and the closer they were to the PFZLT boundary, the higher the appearance density. And the appearance of Chinese fishing vessels with a speed from 0 to 3 knots was mostly outside the EFAZ, showing high density in the waters close to the boundary between Korea and Japan. On the other hand, within the EFAZ, the frequency of appearance of Chinese fishing vessels was also low and scattered. The appearance of Chinese fishing vessels with a speed from 3 to 5 knots mostly shows some variability within the EFAZ, but the frequency of appearance was high and the density was high. The seasonal appearance of Chinese fishing vessels in the waters south of Jeju Island appeared in the southwest in the autumn and then moved south and southeast of Jeju Island in the winter, and in the spring and summer. They were considered going to other fishing grounds without fishing in the waters south of Jeju Island.
        4,000원
        8.
        2019.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this paper is to explore the fishing grounds of trawl fishery, which are operating in the waters around Jeju Island, and to investigate the monthly shifting changes of the explored fishing grounds. Information on AIS of fishing vessels operating near Jeju Island was collected and analyzed from October 16, 2016 to October 16, 2017. Thus, the location of fishing vessels with the same operational characteristics as those in this industry was extracted and displayed on Google Maps' location drawings to analyze the dense distribution of fishing vessels according to the frequency of their appearance. In the distribution of fishing vessels that appeared in October, a wide range of fishing grounds connecting the upper and lower waters of the 221 and 222 sea of fishing area was found to have gradually expanded and increased density, showing the widest range and highest density in December, and then gradually decreasing from January 2017 to near extinction in May. The distribution of fishing vessels that appeared in the left and lower waters of the 243 sea estuary increased not only in November and December, but also in the appearing sea areas gradually moved to the 242 sea and the range of their appearance was extended to the 241 sea. In other words, the highly dense fishing area in December indirectly shows that it is winter fishing grounds for these industries. The distribution of these dense fishing vessels gradually moved north and west with each passing day, reducing their density and reaching a near extinction in August. However, in September, the density was gradually restored again. Fishing vessels that appeared in high density in the northern waters of the 224 sea east of the Yeoseo island in December were thought to be fishing vessels, whose density decreased over time, almost disappeared in May, and reappeared in July and August, showing a certain degree of density, and then decreased again.
        4,000원
        10.
        2018.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the area around Jeju Island, the squid jigging fishery and the hair-tail angling are popular. Therefore, the study on the characteristics of the formation and shift of fishing grounds is very important. We have received and analyzed AIS data of all vessels around Jeju Island from October 16, 2016 to October 16, 2017, and extracted the positions of the fishing vessels with the same operational characteristics as the fishing vessels of their fisheries. The distribution chart of the frequency of fishing vessels appearing in each predefined fishing grid (1 NM × 1 NM) was analyzed. So we took a analogy with the monthly shift of fishing grounds. Many fishing vessels appeared in the seas around Jeju Island from November 2016 to January 2017, and the frequency of their appearance was maintained. In November, however, fishing vessels were mostly concentrated in coastal waters. Yet, the density gradually weakened as they moved into January. From February, the frequency itself began to decline, making it the worst in April. The high concentration of fishing vessels in the waters leading from Jeju Island's northwest coast to south coast in November is believed to be related to the yellowtail fishery that are formed annually in the coastal waters off the island of Marado. In May 2017, the appearance frequency of fishing vessels increased and began to show a concentration in coastal waters around Jeju Island. Fishing vessels began to flock in waters northwest of Jeju Island beginning in July and peaked in August, and by September, fishing vessels were moving south along the coast of Jeju Island, weakening the density and spreading out. Between July and August, fishing vessels were concentrated in waters surrounding Jeju Island, which is believed to be related to the operations of fishing vessels for the squid jigging fishery and the hair-tail angling.
        4,000원
        14.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have studied the efficient operation of the radar and the appropriateness of the installation location, when constructing the VTS system. As the Civil-Military Complex Harbour (Kangjeong Port) is completed in 2016, we set the control area within 10 nautical miles centering on Kangjeong Port, and found out and removed the operational radar blind area of VTS system to provide safe navigation information for vessels that navigating this area. Assuming that two international cruise ships entering at the same time, we performed the radar simulation and compared the images by considering the three sites of Kangjeong Port, Miaksan and Seoguipo Port. Simulation results for a single radar installed at Kangjung Port indicate that the blind area was largely affected by two large cruise ships and the surrounding islands. The blind area due to Kogunsan was considerably large when installed in Miaksan, but the blind area due to the influences of Beomseom, Moonseom and Seopseom was negligibly large. It seems that additional radar installation is necessary as a complementary solution to solve this blind area. When two radars were installed at Miaksan and Kangjeong Port, the residual blind area due to the Seopseom was 0.25 km2 at 0.1~0.33 nautical miles in the southeast direction from Seopseom. In addition, the remaining blind area with two cruise ships mutually influenced was 0.18 km2, which did not occur with a single cruise ship.
        4,000원
        15.
        2017.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is intended to provide navigator with specific information necessary to assist in the avoidance of collision and in operation of ships to evaluate the maneuverability of research vessel Jera. Authors carried out full-scale sea trials for turning test, zig-zag test, and spiral test at actual sea-going condition, which were performed on starboard and port sides with 10-20 rudder angle at service speed of 10 knots. The turning circle was much different at both of the turning of port and starboard which was longer at the starboard than at the port. In the zig-zag test results, the port and starboard was 10˚ the first and second overshoot angles were 6.0˚ , 5.8˚ and 6.3˚ , 7.1˚ respectively and the first overshoot angles were 16.4˚ , 17.6˚ when using 20˚ . Her maneuverability index T and K can be easily determined by using an analogue computer with the data obtained from the zig-zag tests where K is a constant representing the turning ability and T is a constant representing her quick response. In the zig-zag tests under 10˚ or 20˚ at rudder angle, the value K is 0.149. 0.123 sec- and T is 11.853 and 6.193 sec and angular velocity is 0.937˚ /sec and 1.636˚ /sec. In the spiral test, the loop width was unstable at +0.51˚ and -1.19˚ around the midship of rudder, but the tangent line at 0˚ was close to vertical. From the sea trial results, we found that she did comply with the present criterion in the standards of maneuverability of IMO.
        4,000원
        18.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the results of evaluating the passenger comfort due to the standard deviation of acceleration in vertical and lateral direction regarding the ship response in irregular wave by ordinary strip method in regular wave and energy spectrum using linear superposition theory in order to evaluate the motion of experimental ship are as follows. According to the results of ship response, it was possible to find that, in order to reduce the motion of ship, a ship operating in bow sea was more stable than in quartering sea. In the results of analyzing the standard deviation of acceleration in vertical direction according to each component wave pattern, when there was a wave length of 56m and an average wave period of 6 sec, most of cases showed the peak value. And among them, the standard deviation was 0.35 which was the highest in head sea. And in case of lateral direction, the maximum value was shown in a wave length of 100m and an average wave period of 8 sec. And it was 0.16 in beam sea and χ = 150°. In the evaluation of passenger comfort due to standard acceleration in vertical and lateral direction, it was 80% in head and bow sea. On the other hand, it was shown to be 15% in follow sea. Accordingly, when the expected wave height in a sea area where a training ship was intended to operate was known, it was possible to predict the routing of ship. And altering her course could reduce the passenger comfort by approximately 50%.
        4,000원
        1 2 3