We have studied the efficient operation of the radar and the appropriateness of the installation location, when constructing the VTS system. As the Civil-Military Complex Harbour (Kangjeong Port) is completed in 2016, we set the control area within 10 nautical miles centering on Kangjeong Port, and found out and removed the operational radar blind area of VTS system to provide safe navigation information for vessels that navigating this area. Assuming that two international cruise ships entering at the same time, we performed the radar simulation and compared the images by considering the three sites of Kangjeong Port, Miaksan and Seoguipo Port. Simulation results for a single radar installed at Kangjung Port indicate that the blind area was largely affected by two large cruise ships and the surrounding islands. The blind area due to Kogunsan was considerably large when installed in Miaksan, but the blind area due to the influences of Beomseom, Moonseom and Seopseom was negligibly large. It seems that additional radar installation is necessary as a complementary solution to solve this blind area. When two radars were installed at Miaksan and Kangjeong Port, the residual blind area due to the Seopseom was 0.25 km2 at 0.1~0.33 nautical miles in the southeast direction from Seopseom. In addition, the remaining blind area with two cruise ships mutually influenced was 0.18 km2, which did not occur with a single cruise ship.
This study is intended to provide navigator with specific information necessary to assist in the avoidance of collision and in operation of ships to evaluate the maneuverability of research vessel Jera. Authors carried out full-scale sea trials for turning test, zig-zag test, and spiral test at actual sea-going condition, which were performed on starboard and port sides with 10-20 rudder angle at service speed of 10 knots. The turning circle was much different at both of the turning of port and starboard which was longer at the starboard than at the port. In the zig-zag test results, the port and starboard was 10˚ the first and second overshoot angles were 6.0˚ , 5.8˚ and 6.3˚ , 7.1˚ respectively and the first overshoot angles were 16.4˚ , 17.6˚ when using 20˚ . Her maneuverability index T and K can be easily determined by using an analogue computer with the data obtained from the zig-zag tests where K is a constant representing the turning ability and T is a constant representing her quick response. In the zig-zag tests under 10˚ or 20˚ at rudder angle, the value K is 0.149. 0.123 sec- and T is 11.853 and 6.193 sec and angular velocity is 0.937˚ /sec and 1.636˚ /sec. In the spiral test, the loop width was unstable at +0.51˚ and -1.19˚ around the midship of rudder, but the tangent line at 0˚ was close to vertical. From the sea trial results, we found that she did comply with the present criterion in the standards of maneuverability of IMO.
In this paper, the results of evaluating the passenger comfort due to the standard deviation of acceleration in vertical and lateral direction regarding the ship response in irregular wave by ordinary strip method in regular wave and energy spectrum using linear superposition theory in order to evaluate the motion of experimental ship are as follows. According to the results of ship response, it was possible to find that, in order to reduce the motion of ship, a ship operating in bow sea was more stable than in quartering sea. In the results of analyzing the standard deviation of acceleration in vertical direction according to each component wave pattern, when there was a wave length of 56m and an average wave period of 6 sec, most of cases showed the peak value. And among them, the standard deviation was 0.35 which was the highest in head sea. And in case of lateral direction, the maximum value was shown in a wave length of 100m and an average wave period of 8 sec. And it was 0.16 in beam sea and χ = 150°. In the evaluation of passenger comfort due to standard acceleration in vertical and lateral direction, it was 80% in head and bow sea. On the other hand, it was shown to be 15% in follow sea. Accordingly, when the expected wave height in a sea area where a training ship was intended to operate was known, it was possible to predict the routing of ship. And altering her course could reduce the passenger comfort by approximately 50%.
In order to deduce an objective evaluation method of motion seasickness incidence (MSI) by ship motions during underway in irregular waves and to present the fundamental data of passenger comfort on the yacht and the passenger ship according to the result, the MSI of the trainees by the questionnaires was analysed and compared with the rate of variation of salivary a -amylase activity (VSAA) on the training ship "A-ra ho" of Jeju national university. Relationship between rate of variation (x) by salivary a -amylase activity and motion seasickness incidence (y) was described by the equation, MSI(%) = 0.6073 x + 12.189 including the correlation coefficient (R 2 = 0.9853). The result obtained through the rate of variation of salivary a -amylase activity which was the quantitative evaluation method for ship motions causing seasickness was most affected by z-vertical acceleration and occurred within the frequency range 0.1 to 0.3Hz centered on 0.2Hz, and the simulation result based on this finding showed the motion seasickness rate at approximately 4% lower than the rate obtained through the survey.
In order to propose basic references for the policy making of fishing vessel fishery by Jeju Special Self-Governing Province, we have obtained the basic productivity through analyzing operating days and catches of 16 sample fishing vessels registered in Aewol port, the north of Jeju island in the year of 2011. In addition, to compare with the basic productivity of southern sea area in the Jeju island, that of 7 sample fishing vessels registered in Kangjung port was used. Around Aewol port, average operating days during the main catch period from July to October were over 15 days a month. A average daily catch of fishing vessels was minimum 21.0 kg in May and reached to maximum 54.5 kg in December, showing U-shaped catch pattern through the year. The trend formula of the average daily productivity (y) depending on a tonnage (x) of fishing vessels around Aewol port was described by the equation, y = 18.867 ln(x) + 11.001, and that around Kangjung port in the year of 2009 was understood to be y = 23.271 ln(x) + 25.715. As a result, it seemed that the productivity of fishing vessels around Kangjung port, operating in the southern sea area of Jeju Island, was much greater than that of fishing vessels around Aewol port in the northern sea area of Jeju Island. Especially, that of fishing vessels less than 10 tons was 35-40% more.
The objective of this paper is to aid in basic directions for the countermeasure against marine accidents by using the statistical data of Jeju Coast Guard from 1983 to 2012. Marine accidents of about 600~1,000 vessels was reported in all the waters around South Korea from 2000 to 2008. From 2009, these accidents increased rapidly and reached 1,600~2,000 vessels. Although marine accidents of longline fishing vessels did not show a big change prior to 1993, the number have increased steadily until 2007. This is considered a tendency that appears when longline vessels, using the Port of Sungsanpo as a base and operating in fishing grounds in the East China Sea, are converted to long-term fishing from short-term fishing for reasons such as cost reduction due to the sudden rise of oil prices and the performance improvement of the fishing vessels. The number of vessels in marine accidents decreased gradually from 1999 to 2002 and for nearly 7 years from 2002 to 2008, the annual average of marine accidents stayed at 97 vessels. This is seemed to be the result of a change in the policy of either the central or local government and largely associated with changes in the way of statistical processing. This tendency is resulted in lower number of the accidents due to careless navigation which can be viewed as a human error than the number of marine accidents due to poor maintenance as a cause of mechanical failure in the same period. The increase rate in the marine accidents of Jeju Island-based fishing vessels is greater than that of other area-based fishing vessels among the fishing vessels operating in coastal and near sea around Jeju Island each year.
In an effort to find the optimum porous of Taewoo through the mathematical model 2 - dimensional tank water experiment among the approached to a problem related to ocean engineering, this study analyzed the porosity by dividing it into 9 cases. As the wave penetrates through the longitudinal porous of the Taewoo model, it was found that there is a wave energy loss because of the phenomenon of the separation of the porous due to the eddy. Looking into the general tendency based on the wave-height meter (probe) data, it was found that the shorter wavelength and higher frequency area, the more reflection coefficients increased, but in contrast, the longer wavelength and lower frequency area, the transmission coefficients showed the increasing trend and energy dissipation was in a similar way with reflection coefficients. In addition, it was found that the bigger the porosity was, the narrower distribution range of reflection coefficients was, and the more its average value decreased. On the other hand the transmission coefficients in direct opposition to reflection was found to show the wider range and the more gradual increase in the average value as porosity was the bigger around the average value. In contrast, energy dissipation rate was found to increase linearly as porosity increased the more around the porosity of 0.2518 but it decreased gradually around the peak point. Through the above results, it is judged that the porous of optimum in the longitudinal direction of the Taewoo model perforated plate was about 2.6cm because it was found that the porosity which produced the lowest reflection and transmission coefficient and the highest energy dissipation. As a result of comparing this to the case where there was no porosity at all, it showed the function of wave absorbing about 31.60%.
In order to obtain the fundamental data about the behavior of conger by underwater audible sound, this experiment was carried out to investigate the hearing ability of Conger eel Conger myriaster which was in the coast of Jeju Island by heartbeat conditioning method using pure tones coupled with a delayed electric shock. The audible range of conger eel extended from 50Hz to 300Hz with a peak sensitivity at 80Hz including less sensitivity over 200Hz. The mean auditory thresholds of conger eel at the frequencies of 50Hz, 80Hz, 100Hz, 200Hz and 300Hz were 105dB, 92dB, 96dB, 128dB and 140dB, respectively. The positive response of conger eel was not evident after the sound projection of over 200Hz. At the results, the sensitive frequency range of conger eel is narrow in spite of swim bladder. Auditory masking was determined for Conger eel by using masking stimuli with the spectrum level range of about 60~70dB (0dB re 1μPa/Hz). According to white noise level, the auditory thresholds increased as compared with thresholds in a quiet background noise including critical ratio at 68dB of white noise from minimum 26dB to maximum 30dB at test frequencies of 80Hz and 100Hz. The noise spectrum level at the start of masking was distributed at the range of about 68dB within 80~100Hz.
In order to obtain the fundamental data about the behavior of sharks by underwater audible sound, this experiment was carried out to investigate the auditory characteristics of tiger shark Scyliorhinus torazame which was caught in the coast of Jeju Island by heart rate conditioning method using pure tones coupled with a delayed electric shock. The audible range of tiger shark extended from 80Hz to 300Hz with a peak sensitivity at 80Hz including less sensitivity at 300Hz. The mean auditory thresholds of tiger shark at the frequencies of 80Hz, 100Hz, 200Hz and 300Hz were 90dB, 103dB, 94dB and 115dB, respectively. The positive response of tiger shark was not evident after the sound projection of over 300Hz. At the results, the sensitive frequency range of tiger shark is narrower than that of fish that has swim bladder. In addition, it is assumed that the most sensitive frequency in auditory thresholds of Chondrichthyes is lower than that of Osteichthyes. Critical ratios of tiger shark measured in the presence of masking noise in the spectrum level range of about 60-70dB (0dB re 1μPa/Hz) increased from minimum 27dB to maximum 39dB at test frequencies of 80-200Hz. The noise spectrum level at the start of masking was distributed at the range of about 65dB within 80-200Hz.
Reduction of ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargo as well as improving the comfort of the ride. It is a common experience for mariners, to see that steering with a rudder generally induces rolling of the ship, though the original aim of the rudder is to keep the ship's heading to the required course. At the first stage, when a rudder is steered, usually a ship heels in an inward direction, due to the roll moment acting on the rudder. At the next stage in steering, the main heel may change to an outward. This coupling between rudder and roll motion has become an attractive problem from the point of view of roll stabilization using the rudder, because it is a natural in sight that if the rudder action is skillfully related to the change of roll as well as to the course deviation, the roll can be reduced to a certain degree. The main aim of this paper is to discuss the results of the actual full-scale sea trials carried out on steer gear No.1 and No.1 2, the individual quartermaster and to make clear their statistical properties, using the actual data which included measurement of roll angle, roll rate and the comparative tests were carried out immediately after each other, in order to minimize any statistical variation in sea conditions. It can be concluded that the steer gear No. 1 2 reduced the roll motion on average by about 21% in comparison with the No.1 and confirmed the some difference as per a ability of quarter-master's maneuver.